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I. Introduction
● Spiking neural networks (SNNs) transmit output signals 

only after their input signals exceed the activation 
threshold

● Processors designed for SNNs consume much less 
power1 than processors designed for artificial neural 
networks (ANNs) making SNNs a promising 
architecture for energy-constrained datacenters and 
Internet of Things (IoT) devices

● SNN training difficult because backpropagation cannot 
infer the changing subset of transmitting neurons and 
the duration of their transmissions

● State-of-the-art SNN platforms provide platform-specific 
mechanistic models to characterize neuron activations; 
however, these models are often heavily tied to the 
specific spike distribution used for training

● In this poster, we present a platform-agnostic 
approach that automatically learns neuron 
activations from observations using established 
approximations, combined with a generative 
adversarial network (GAN) to augment the training 
dataset with broader spike distribution data

II. Design
● SNN operations rely on content of the input data as well 

as its distribution in time e.g. where an ANN need only 
to classify the subject within a static image, a SNN 
would need to additionally process the distribution of 
pixels across the presentation time of that image

● Spiking classification is more complex due to additional 
time dimension introducing further distinctions between 
samples and ultimately affecting model robustness

● The generative adversarial network (GAN) architecture 
melds exceptionally well with the considerations SNNs 
require

● Generated samples can be used to enrich datasets to 
provide a broader spectrum of spike distributions 
leading to a more robust spiking model

● Our models quickly responded to the changing spike 
distribution and achieved a higher training accuracy

● Our second experiment focused on improving model 
robustness against samples different from the training 
spike distribution

● Intuitively, all models performed worse as the samples 
drifted further from the training spike distribution

● Our models outperformed the baseline classifier by an 
average of 1.80% in addition to having an average 
1.02% lesser reduction in accuracy moving away from 
the training spike distribution

● Training dataset augmentation improved SNN model 
robustness without hindering training performance or 
sacrificing precision on the original spike distribution 

IV. Conclusions
● Conventional SNN training methods do not ensure 

adequate generalization across spike distributions
● Training data richness is an important caveat for SNN 

training considering the additional variation of samples 
across the time dimension 

● Our preliminary results show detectable 
improvements in model performance when 
exposed to dissimilar samples during training
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● Samples of varying spike distributions can be easily generated that still satisfy the higher-level constraints of the 
problem e.g. images of a subject can be generated with varying 
distributions of spike events throughout the image 
presentation duration

● Our methodology is as follows:
1) Utilizing the SLAYER2 framework, we seeded a spiking 

  GAN with the weights of a converged spiking classifier
2) The generator of the trained GAN is then used to 

  augment the training dataset for further training of the 
  classifier

● Samples used to augment the training dataset were tailored 
based on the models performance using 3 schemes:

a) Samples from each class were added equally
b) Samples from the 3 worst performing classes added in 

  an adhoc fashion
c) Number of samples correlated to the relative 

  performance of each class 

III. Results
● Our first experiment focused on a model's ability to adapt to changing spike distributions during training
● We explored each model's training response when swapping to fewer and more spikes equating to half and double 

compared to the training distribution
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Figure 2: Example of differing spike distributions yielding identical static images.

Figure 4: Train accuracies of baseline vs dataset-augmented models. Dashed vertical lines indicate where the training set was augmented with generated data.

Table 1: Test accuracy vs spike distribution with std. error across 6 folds.
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Figure 1: Comparison of neuron operations: an ANN which operates on real 
inputs x
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 as opposed to an SNN that 

acts on discrete spike trains s
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 and outputs spike train s

i
 where 

each spike train is the sequence of neuron firing times.

Figure 3: Our process: (1) An SNN classifier is trained to convergence 
(2) The SNN classifier weights seed the discriminator of the GAN to be 
trained (3) The trained generator is used to augment the training dataset for 
further SNN classifier training
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