
Toward Robust Spiking Neural Networks
Anthony Baietto1 (baietto.2@osu.edu), Christopher Stewart1, Trevor J. Bihl2

I. Introduction
● Spiking neural networks (SNNs) transmit output signals

only after their input signals exceed the activation
threshold

● Processors designed for SNNs consume much less
power1 than processors designed for artificial neural
networks (ANNs) making SNNs a promising
architecture for energy-constrained datacenters and
Internet of Things (IoT) devices

● SNN training difficult because backpropagation cannot
infer the changing subset of transmitting neurons and
the duration of their transmissions

● State-of-the-art SNN platforms provide platform-specific
mechanistic models to characterize neuron activations;
however, these models are often heavily tied to the
specific spike distribution used for training

● In this poster, we present a platform-agnostic
approach that automatically learns neuron
activations from observations using established
approximations, combined with a generative
adversarial network (GAN) to augment the training
dataset with broader spike distribution data

II. Design
● SNN operations rely on content of the input data as well

as its distribution in time e.g. where an ANN need only
to classify the subject within a static image, a SNN
would need to additionally process the distribution of
pixels across the presentation time of that image

● Spiking classification is more complex due to additional
time dimension introducing further distinctions between
samples and ultimately affecting model robustness

● The generative adversarial network (GAN) architecture
melds exceptionally well with the considerations SNNs
require

● Generated samples can be used to enrich datasets to
provide a broader spectrum of spike distributions
leading to a more robust spiking model

● Our models quickly responded to the changing spike
distribution and achieved a higher training accuracy

● Our second experiment focused on improving model
robustness against samples different from the training
spike distribution

● Intuitively, all models performed worse as the samples
drifted further from the training spike distribution

● Our models outperformed the baseline classifier by an
average of 1.80% in addition to having an average
1.02% lesser reduction in accuracy moving away from
the training spike distribution

● Training dataset augmentation improved SNN model
robustness without hindering training performance or
sacrificing precision on the original spike distribution

IV. Conclusions
● Conventional SNN training methods do not ensure

adequate generalization across spike distributions
● Training data richness is an important caveat for SNN

training considering the additional variation of samples
across the time dimension

● Our preliminary results show detectable
improvements in model performance when
exposed to dissimilar samples during training

V. References
[1] A. S. Kucik and G. Meoni, “Investigating spiking neural
networks for energy-efficient on-board ai applications. a case
study in land cover and land use classification,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2021, pp. 2020–2030.
[2] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error
reassignment in time,” 2018. [Online]. Available:
https://arxiv.org/abs/1810.08646

VI. Acknowledgments
The work herein is the work of the authors and does not
represent any position of the Air Force Research Laboratory,
US Air Force, Department of Defense, or US Government.
This work was approved for public release. This research was
funded by SLAKE contract FA8650-19-C-1692. This work was
supported in part by high-performance computer time and
resources from the DoD High Performance Computing
Modernization Program.

Model
Testing Spike Distribution

Fewer
Spikes

Train Dist.
Spikes

More
Spikes

Baseline 37.76
± 0.34

52.67
± 0.31

42.73
± 0.52

Our approach [equal] 39.09
± 0.25

54.57
± 0.27

44.07
± 0.52

Our approach [adhoc] 39.33
± 0.28

54.25
± 0.30

44.67
± 0.52

Our approach [scale] 38.52
± 0.39

54.05
± 0.32

43.51
± 0.29

● Samples of varying spike distributions can be easily generated that still satisfy the higher-level constraints of the
problem e.g. images of a subject can be generated with varying
distributions of spike events throughout the image
presentation duration

● Our methodology is as follows:
1) Utilizing the SLAYER2 framework, we seeded a spiking

 GAN with the weights of a converged spiking classifier
2) The generator of the trained GAN is then used to

 augment the training dataset for further training of the
 classifier

● Samples used to augment the training dataset were tailored
based on the models performance using 3 schemes:

a) Samples from each class were added equally
b) Samples from the 3 worst performing classes added in

 an adhoc fashion
c) Number of samples correlated to the relative

 performance of each class

III. Results
● Our first experiment focused on a model's ability to adapt to changing spike distributions during training
● We explored each model's training response when swapping to fewer and more spikes equating to half and double

compared to the training distribution

1Department of Computer Science and Engineering, The Ohio State University 2Sensors Directorate, Air Force Research Laboratory

Figure 2: Example of differing spike distributions yielding identical static images.

Figure 4: Train accuracies of baseline vs dataset-augmented models. Dashed vertical lines indicate where the training set was augmented with generated data.

Table 1: Test accuracy vs spike distribution with std. error across 6 folds.

x1

x2

xn

w2, i

wn ,i

w1, i

x i

s1,<t

w2, i

wn ,i

w1, i

s2,<t

sn ,<t

si ,t

Figure 1: Comparison of neuron operations: an ANN which operates on real
inputs x

1
, x

2
, ..., x

n
 and outputs real number x

i
 as opposed to an SNN that

acts on discrete spike trains s
1
, s

2
, ..., s

n
 and outputs spike train s

i
 where

each spike train is the sequence of neuron firing times.

Figure 3: Our process: (1) An SNN classifier is trained to convergence
(2) The SNN classifier weights seed the discriminator of the GAN to be
trained (3) The trained generator is used to augment the training dataset for
further SNN classifier training

START

TRAIN SNN
CLASSIFIER

INITIALIZE GAN
DISCRIMINATOR

TRAIN
GAN

INITIALIZE SNN
CLASSIFIER

INITIALIZE GAN
GENERATOR

EXPAND TRAIN
DATASET

FURTHER TRAIN
SNN CLASSIFIER

1

2

3

https://arxiv.org/abs/1810.08646

	Slide 1

