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• Neural Network (NN) popularity growing 
very quickly [1]

• NN boasts superb non-linear function 
approximation [2, 3, 4] applied to many 
domains

Introduction

Current Trends
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• NN dataset size
growing [5]

• NN model size 
growing [6]

Introduction

Current Trends

NLP                                                                 vision
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• Harder problem → more data → larger model

• “1000 typewriting monkeys vs 1 Shakespeare”
• Trend is to keep adding blocks to black-box model
• Are they all necessary?
• Could design fewer more 

intelligent modules

Introduction

Current Trends
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• Leverage extant problem 
information

• Reduce model footprint

• Reduce data footprint

Introduction

Research Goals
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Increased Wireless Spectrum Interference
• 4G/5G telecommunication networks
• Mobile sensors
• IoT devices

AutoWave
Radar Waveform Design Overview
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Interference Mitigation with Spectral Notching
• Sample RF environment

• Determine interfered stopband

• Modify transmit waveform to avoid stopband

AutoWave
Radar Waveform Design Overview
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• Difficult task with multiple constraints that must 
be met for radar functionality and power 
efficiency

• Trade-off between runtime/power and precision
• Want near real-time without sacrificing performance

AutoWave
Radar Waveform Design Overview
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• Solutions must also be portable to different 
hardware
• RFSoC FPGA (Radio Frequency System on Chip Field-Programmable Gate 

Array) has fixed-point representation limit for example

AutoWave
Radar Waveform Design Overview



12

AutoWave
Radar Waveform Design Overview

“Intelligent 
Design”

Hardware 
Portability

End-to-EndLow SWaPWork

XX
Error Reduction 

Algorithm (ERA) [7]

XX
Re-Iterative Uniform 
Weight Optimization 

Algorithm (RUWO) [8]

XXXMIMO GPU [9]

XXXTCNRWR [9]

XOnly outputXRVTDCNN [10]

XX
Autowave pre-

computed [11, 12, 13]

XXXXAutowave [AB1, AB2]
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• AutoWave→ Artificial Intelligence (AI) 
implementation of an adaptive radar system 
which uses NN to adjust transmitted waveforms 
to avoid sources of interference
• Treat RUWO as absolute, train NN to learn RUWO

• Naïve approach of simply throwing a larger NN 
will not work

AutoWave
Radar Waveform Design Overview
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Moving away from Mean Squared Error (MSE)

• Numerical comparisons between coefficient 
vectors prone to errors

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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Tailor loss function to radar waveform design
1. Provide quicker learning to valid solutions compared to MSE
2. Encourage NN to always produce valid waveforms (even if not 

identical to RUWO)
3. Discourage “close enough” waveforms which are similar but not 

valid

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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Split processing into 2 parallel NN

• Quadrature radar waveforms are separate

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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Split processing into 2 parallel NN (cont’d)

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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CPU / GPU Simulation

RFSoC FPGA Open-Air Trials

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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Custom Loss

MSE

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”
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• Specifically target low power embedded 
devices (Raspberry Pi 3B)

AutoWave
“Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design”
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AutoWave
“Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design”

Raspberry Pi 3B
Broadcom BCM2837, 1GB RAM

Latency (ms)          Energy (J)

Dell r720 
2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM

Latency (ms)      Energy (J)
Algorithm

1510.5 ± 14.8453,965.43 ± 4131.61261.3 ± 6.51064.98 ± 10.94RUWO

6.5 ± 0.11982.04 ± 29.2745.5 ± 1.4185.47 ± 3.87ERA

0.6 ± 0.01230.98 ± 2.743.7 ± 0.323.19 ± 1.86NN MSE

0.6 ± 0.01233.92 ± 3.163.7 ± 0.120.72 ± 0.44
NN Tailored 

Loss 
Function

0.7 ± 0.01250.90 ± 0.634.1 ± 0.623.35 ± 0.29
NN Tailored 

Network 
Architecture
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Spiking Neural Networks (SNNs)
• Biologically inspired 3rd generation neural networks

• Neurons communicate via discrete pulses over time

• Great for time-series data

• SNN processing consumes less power when 
realized on neuromorphic                                 
hardware such as 
Intel Loihi [15]

https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-
neuromorphic-loihi-2-lava-software.html#gs.4ve63w

SNN-GAN

Spiking Neural Networks (SNNs) Overview
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• Operate on continuous 
values 

• Information propagates 
instantaneously

• Operate on discrete spike 
trains 

• Must be run over a period 
of time

ANNs          vs            SNNs        

SNN-GAN

Spiking Neural Networks (SNNs) Overview
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SNN Data
• SNNs operate on discrete spike trains

• Can be either generated from static data using 
integrate-and-fire (IF) neurons 
or captured directly using a 
Dynamic Vision Sensor (DVS) 
camera which produces event
data: https://inilabs.com/products/

SNN-GAN

Spiking Neural Networks (SNNs) Overview
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Spike Distribution Dependencies
• For a given static image, there are a copious number 

of valid spike trains which can be created/captured 
depending on IF neuron parameters, DVS camera 
settings, or lighting properties of the subject

• Surrogate gradient SNN training can fixate on the 
intervals of training spikes leading to generalization 
issues 

SNN-GAN

Spiking Neural Networks (SNNs) Overview
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Our approach
• Using a spiking GAN, generate valid samples of 

varying spike distributions

• Augmented dataset provides additional robustness 
against samples different from the original training 
set

• Generated samples enrichen dataset without 
additional manual collection of data (and exponential 
growth for each different spike distribution)

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Generative Adversarial Networks (GANs)
• Adversarial learning paradigm in which a generator 

model synthesizes artificial samples, and a 
discriminator model classifies samples as either 
real or fake

• and “compete” against each other i.e., they are 
playing a minimax 
game to each better
themselves

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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Why GANs
• Most models are classifiers e.g., given an input , 

they predict a label thus estimating

• However, these models cannot estimate and 
therefore cannot sample from i.e., they cannot 
create new samples

• The combination of a traditional classifier model with 
a new generative model unlocks new functionality 

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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Generator
• The generator , often a deep neural network, 

transforms an input noise vector into a realistic 
sample
The goal of is to learn a mapping from some noisy 
space to which approximates the real data 
distribution 

• Once sufficiently trained, e.g., can 
generate arbitrary samples which appear to be real

SNN-GAN

Generative Adversarial Networks (GANs) Overview



33

Discriminator
• The discriminator , often a deep neural network or 

Convolutional Neural Network (CNN) for images, 
classifies input samples as either real (coming from 
the real distribution) or fake (coming from )

• The goal of is to learn a mapping from an input 
space (containing potentially both real & fake 
samples) to [0, 1] where 0 asserts a sample is fake 
and 1 asserts a sample is real

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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GAN Training
• and are trained simultaneously in which identifies areas in 

which it can more easily identify fake samples

• These areas then become the focus for where updates its weights

• Given sufficient capacity, and converge to where ௚ ௗ௔௧௔ and 
for all input

•
ீ ஽

௫~௣೏ೌ೟ೌ ௫ ௭~௣೥ ௭

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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GAN Training (cont’d)
• For fixed , training to the optimal classifier ீ

∗ ௣೏ೌ೟ೌ ௫

௣೏ೌ೟ೌ ௫ ା௣೒ ௫
is 

computationally expensive. Instead, training of and is alternated
while keeping near 
optimal to give better 
gradients [16]

• Notice: is never trained
directly on the real data,
it only learns from the
gradient from flowing
backward. This prevents
“overfitting” and instead
allows to branch beyond
the real data

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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GAN Training Issues
• “Helvetica Scenario” aka Mode Collapse

• Situation in which fails to generalize its outputs and instead 
produces all similar samples

• Often caused by learning too fast relative to , and so 
begins to favor generating a subset of the data but is unable to 
escape the local minima once continues learning

• Vanishing Gradient
• Often caused by learning too fast relative to in which 

can perfectly distinguish real/fake samples leaving unable to 
“catch up” in its generating ability leading to stagnation in 

Balancing and is difficult! 

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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Extensions
• Conditional GAN (CGAN)

• Allows for specifying which class of data to be generated by 
attaching a label to the latent input vector for 

SNN-GAN

Generative Adversarial Networks (GANs) Overview
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Our approach (rep.)
• Using a spiking GAN, generate valid samples of 

varying spike distributions

• Augmented dataset provides additional robustness 
against samples different from the original training 
set

• Generated samples enrichen dataset without 
additional manual collection of data (and exponential 
growth for each different spike distribution)

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”



39

(1) SNN classifier trained to convergence

(2) GAN trained using classifier weights to seed discriminator

(3) Trained GAN generator used to augment train dataset for further  
classifier training START

FURTHER TRAIN 
SNN CLASSIFIER

INITIALIZE SNN 
CLASSIFIER

TRAIN SNN 
CLASSIFIER

INITIALIZE GAN 
DISCRIMINATOR

INITIALIZE GAN 
GENERATOR

TRAIN GAN

AUGMENT TRAIN 
DATASET

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Our approach (cont’d)
• During augmentation, samples are generated on an 

as-needed basis determined by the relative class 
performances

• Difficulty of correct classification is not uniform 
across all classes of data → disproportionate 
number of samples can achieve same overall 
accuracy

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Our approach (cont’d)
• Three schemes used to determine the number of 

additional samples needed for the next iteration:

1) equal: same number of samples across all classes

2) adhoc: only samples from the 3 worst performing 
classes added

3) scale: number of samples added correlated to 
relative performance of each class

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Setup
• SLAYER [17] SNN training platform used

• CIFAR-10 training spike trains generated from 
firing rate distribution using LIF (leaky 

integrate-and-fire neuron) in Nengo [18] simulator

• Models evaluated on fewer spikes and more spikes 
distributions → half ( ) and double 
( ) the number of spikes compared to 
training distribution

The work herein is the work of the authors and does not represent any position of the Air Force Research Laboratory, US Air Force, Department of Defense, or US Government. This work was approved for public release under case AFRL-2023-3911.

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Training
• Our models quickly responded to the changing spike 

distribution

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Testing
• All models perform worse as samples drifted further 

from the training distribution

• Our models outperformed baseline classifier by an 
average 1.80% and had an average 1.02% lesser 
reduction in accuracy

Testing Spike Distribution
Fewer Spikes    Train Dist. Spikes      More Spikes

Model

42.73 ± 0.5252.67 ± 0.3137.76 ± 0.34Baseline

44.07 ± 0.5254.57 ± 0.2739.09 ± 0.25Our approach [equal]

44.67 ± 0.5254.25 ± 0.3039.33 ± 0.28Our approach [adhoc]

43.51 ± 0.2954.05 ± 0.3238.52 ± 0.39Our approach [scale]

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”
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Outcomes
• Conventional SNN training methods do not ensure 

generalization capabilities for temporal data

• Our results show improvements in model 
robustness against dissimilar samples from the 
training data

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”



46

Outline
• Introduction

• Current Trends
• Research Goals

• Autowave
• Radar Waveform Design Overview
• “Lean Neural Networks for Autonomous Radar Waveform Design”
• “Lean Neural Networks for Real-time Embedded Spectral Notching 

Waveform Design”

• SNN-GAN
• Spiking Neural Networks (SNNs) Overview
• Generative Adversarial Networks (GANs) Overview
• “Toward Robust Spiking Neural Networks”
• “Dataset Augmentation for Robust Spiking Neural Networks”

• Current & Future Work

Outline



47

“Generative Datasets for Training Spiking 
Neural Networks”

• Expand datasets (N-MNSIT, CIFAR10-
DVS, DVSGesture)

• Expand frameworks 
(Nengo Neural Engineering
Framework )

Current Work
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Spatial Splitting

Temporal Splitting

Current Work

1ms         2ms             3ms         4ms                        49ms       50ms
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• Why do NN models (including SNNs) need 
so much data?

• NN training has many pitfalls [19, 20], 
better algorithm must exist (Foutse Khomh)

• MAJOR dependency on training data
• Model performs poorly

↓
Test set representative?

Future Work
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Dataset condensation [21]

• Rather than generating realistic samples, 
generate “super” samples which don’t 
necessarily look real, but produce identical 
gradient updates faster

Future Work



51

What about for SNNs?

Future Work
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• Can our GAN approach be combined with 
dataset condensation to generate “super” 
samples?

• Can this approach be applied to 
neuromorphic computing to compress the 
already larger data-space?

• Can this approach condense different 
spike distributions?

Future Work



Questions?
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