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THE OHIO STATE UNIVERSITY Introduction
Current Trends

* Neural Network (NN) popularity growing
very quickly [1]

* NN boasts superb non-linear function
approximation [2, 3, 4] applied to many
domains
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THE OHIO STATE UNIVERSITY Introduction
Current Trends

* Harder problem — more data — larger model
* “1000 typewriting monkeys vs 1 Shakespeare”

« Trendis to keep adding blocks to black-box model

 Are they all necessary? Tsmer Bk o

 Could design fewer more i
intelligent modules
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THE OHIO STATE UNIVERSITY Introduction
- Research Goals

* Leverage extant problem
information

 Reduce model footprint
 Reduce data footprint
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THE OHIO STATE UNIVERSITY AutoWave
Radar Waveform Design Overview

Increased Wireless Spectrum Interference
« 4G/5G telecommunication networks
 Mobile sensors
 |oT devices




THE OHIO STATE UNIVERSITY AutoWave
Radar Waveform Design Overview

Interference Mitigation with Spectral Notching

« Sample RF environment
* Determine interfered stopband
* Modify transmit waveform to avoid stopband




AutoWave

THE OHIO STATE UNIVERSITY
Radar Waveform Design Overview

 Difficult task with multiple constraints that must
be met for radar functionality and power

efficiency
* Trade-off between runtime/power and precision

Want near real-time without sacrificing performance
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AutoWave

Radar Waveform Design Overview

« Solutions must also be portable to different

hardware

. RFSoC FPGA (Radio Frequency System on Chip Field-Programmable Gate

Array) has fixed-point representation limit for example

CPU / GPU
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THE OHIO STATE UNIVERSITY AutoWave
Radar Waveform Design Overview

Hardware “Intelligent

Work Low SWaP End-to-End Portability Design”

Error Reduction

Algorithm (ERA) [7] A A
Re-lterative Uniform
Weight Optimization X X
Algorithm (RUWO) [8]
MIMO GPU [9] X X X
TCNRWR [9] X X X
RVTDCNN [10] X Only output X
Autowave pre- X X
computed [11, 12, 13]
Autowave [AB1, AB2] X X X X

12



THE OHIO STATE UNIVERSITY AutoWave
Radar Waveform Design Overview

« AutoWave — Artificial Intelligence (Al)
implementation of an adaptive radar system
which uses NN to adjust transmitted waveforms

to avoid sources of interference
Treat RUWO as absolute, train NN to learn RUWO

* Nalve approach of simply throwing a larger NN
will not work

Algorithm GPU Latency (us) CPU Latency (us) Cosine Similarity Null Depth (dBm)

NN MSE 1 Layer 747.71 £ 5.23 786.44 = 5.01 0.9901 + 7.60 x 10> 28.54 + 0.16
NN MSE 2 Layers 749.40 £ 5.61 79792 + 5.99 0.9900 + 7.89 x 107> 29.17 =+ 0.22
NN MSE 3 Layers 797.72 = 10.03 855.34 £ 6.38 0.9898 + 9.87 x 10~° 26.57 = 0.23

13



THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

Moving away from Mean Squared Error (MSE)

* Numerical comparisons between coefficient
vectors prone to errors

Neural

Network

14



THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

Tallor loss function to radar waveform design

1. Provide quicker learning to valid solutions compared to MSE
2. Encourage NN to always produce valid waveforms (even if not

identical to RUWO)
3. Discourage “close enough” waveforms which are similar but not

valid
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Characteristics Frequency Domain Power Time Domain Amplitude Phase
‘ . .
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THE OHIO STATE UNIVERSITY AutoWave

“Lean Neural Networks for Autonomous Radar Waveform Design”

Split processing into 2 parallel NN

Quadrature radar waveforms are separate

Q, Llo
| Amplitude —»
g (| o / " M dIIQIt I+Q
E /| Q Amplitude —»| Modulator —
= & "
S
(@ Phase A -
|
| Amplitude
\W \)(/ \
v
— Phase I+
A Q
1+Q fo
I Amplitude (V) | Q Amplitude (V) S
Amplitude (V) Phase (°) =]
£
! 4 1 0 < !
0 1 1 90 t
! 0 1 180
0 al 1 270 1 6



THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

Split processing into 2 parallel NN (cont’'d)

Predict

In-Phase
Network

Out-of-Phase | &l
Network




THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

CPU / GPU Simulation

Algorithm Cosine Similarity Null Depth (dBm)
RUWO 1.0 + 0.0 202.23 £ 0.0
ERA 0.9982 £+ 0.0 31.80 £ 0.0
NN MSE 0.9901 + 7.69 x 10~> 2854 + 0.16
NN Custom Loss 0.9789 + 9.53 x 10> 2232 + 0.13
NN Split 0.9900 + 1.08 x 104 29.75 + 0.12
Algorithm Null Depth (dBm)
RUWO 33.62 = 0.041
ERA 37.13 £ 0.057
NN MSE 28.17 £ 0.213
NN Custom Loss 21.22 = 0.138
NN Split 2893 + 0.285

18
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THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

Algorithm CPU Latency (us) GPU Latency (us) RFSoC Latency (us)

RUWO 806,347.0 + 11,860.82 649,581.0 =+ 33,168.78 10,060,000.0 =+ 999.0
ERA 166,982.0 £ 3465.06 641,441.0 =+ 20,921.13 12460 + 8.8

NN MSE 786.4 + 5.01 747.71 £ 5.23 21,7 £ 0.0
NN Custom Loss 762.8 + 5.04 735.68 £ 7.99 21,7 £ 0.0
NN Split 1931.5 = 9.75 823.63 £ 6.76 13.7 £ 0.0

1931.45 ps
2.5x

peedup

- 786.44 ps @
762.80 ps

7
Q
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THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design”

» Specifically target low power embedded
devices (Raspberry Pi 3B)

1.00

0.95
0.90
0.85
0.80

RUWO ERA NN
MSE Custom Spht

Cosine Similarity

Null Depth | 202.2 31.9 28.5 223 29.8
(dBm)
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THE OHIO STATE UNIVERSITY AutoWave
“Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design”

Dell r720 Raspberry Pi 3B
A|gorith m 2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM Broadcom BCM2837, 1GB RAM
Latency (ms) Energy (J) Latency (ms) Energy (J)
RUWO 1064.98 £ 10.94 261.3+£6.5 453,965.43+4131.61 1510.5+14.8
ERA 185.47 + 3.87 455+ 14 1982.04 + 29.27 6.5+ 0.1
NN MSE 23.19 + 1.86 3.7+0.3 230.98 + 2.74 0.6 = 0.01
NN Tailored
Loss 20.72+0.44 3.7+0.1 233.92 + 3.16 0.6 = 0.01
Function
NN Tailored
Network 23.35 +£0.29 4.1+0.6 250.90 £ 0.63 0.7 £ 0.01

Architecture

22
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THE OHIO STATE UNIVERSITY SNN-GAN
Spiking Neural Networks (SNNs) Overview

Splklng Neural Networks (SNNs)

Biologically inspired 3" generation neural networks
* Neurons communicate via discrete pulses over time
* (Great for time-series data

 SNN processing consumes less power when
realized on neuromorphic

hardware such as
Intel Loihi [15]

Mess AR
Lohi2 AR

https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-
neuromorphic-loihi-2-lava-software.html#gs.4ve63w

24



THE OHIO STATE UNIVERSITY SNN-GAN
Spiking Neural Networks (SNNs) Overview

ANNSs VS SNNs

« Operate on continuous « Operate on discrete spike
values x4, x5, ..., Xy, trains 54,5, ..., S,
 Information propagates * Must be run over a period
instantaneously of time
] |11 | ||
Sl,<t 7 sz,<r v Sn,<t

25
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THE OHIO STATE UNIVERSITY
Spiking Neural Networks (SNNs) Overview

ANNSs VS SNNs

E=LYy) Input s;(¢) =Zf5(t—t-(f))
netj = Zi Wijxl' + b
a; (t) = (E * SL)(t) E(t)— exp (1 )@(t)
= <p(netj) s
v;(t) = (v =*5s)(t) V(t)=—219exp(1—1—r)®(t)
(OL(y,oj) do(net;) _ u(t) = xyw;a;(t) + vi(¢)
J output
5. = 4 doj dnet; fg(U) T U > S
i =
(Zk Wik Sk ) dg;g;etj) j hidden s(t) =s(t) + 8(t —tU*P)
tU+D = minft : u(t) = 9,t >t}
AWij = —n0]5] u®) [\
0}

Upest
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THE OHIO STATE UNIVERSITY SNN-GAN
Spiking Neural Networks (SNNs) Overview

SNN Data

 SNNs operate on discrete spike trains

* Can be either generated from static data using
integrate-and-fire (IF) neurons
or captured directly using a
Dynamic Vision Sensor (DVS)
camera which produces event
data:

|x coordinate, y coordinate, t timestep, p polarity of light — intensity change]

27



THE OHIO STATE UNIVERSITY SNN-GAN
Spiking Neural Networks (SNNs) Overview

Spike Distribution Dependencies

 For a given static image, there are a copious number
of valid spike trains which can be created/captured
depending on IF neuron parameters, DVS camera
settings, or lighting properties of the subject

e Surrogate gradient SNN training can fixate on the
intervals of training spikes leading to generalization

Ims 2ms 3ms 4ms 50ms

Issues
.l  E-r
| ¥

2

oo



THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Our approach

* Using a spiking GAN, generate valid samples of
varying spike distributions

 Augmented dataset provides additional robustness
against samples different from the original training
set

* (Generated samples enrichen dataset without
additional manual collection of data (and exponential
growth for each different spike distribution)

29



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

Generative Adversarial Networks (GANSs)

« Adversarial learning paradigm in which a generator
model G synthesizes artificial samples, and a
discriminator model D classifies samples as either
real or fake

(G and D “compete” against each other i.e., they are

High

Discriminator
Model

D

themselves .4

Low Generative e
Dimensional Model ‘ Eehﬁrated

Latent G

Space

playing a minimax Dimensions| ‘I U?'_]
ample :
game to each better == || | = ]\

30



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

Why GANSs

 Most models are classifiers e.g., given an input x,
they predict a label y thus estimating P(y|x)

 However, these models cannot estimate P(x) and
therefore cannot sample from P(x) i.e., they cannot
create new samples

 The combination of a traditional classifier model with
a new generative model unlocks new functionality

31



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

Generator

 The generator G, often a deep neural network,
transforms an input noise vector into a realistic
sample
The goal of G is to learn a mapping from some noisy
space p, to p, which approximates the real data

distribution p,¢,

* Once sufficiently trained, p, = pyq¢q €-9., G Can
generate arbitrary samples which appear to be real

32



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

Discriminator

* The discriminator D, often a deep neural network or
Convolutional Neural Network (CNN) for images,
classifies input samples as either real (coming from
the real distribution) or fake (coming from G)

 The goal of D is to learn a mapping from an input
space (containing potentially both real & fake
samples) to [0, 1] where 0 asserts a sample is fake
and 1 asserts a sample is real

33



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

GAN Training

G and D are trained simultaneously in which D identifies areas in
which it can more easily identify fake samples

 These areas then become the focus for where G updates its weights

« Given sufficient capacity, G and D converge to where p, = pyqtq and
D(x) = 0.5 for all input

mGin max VD,G) = Exp, . collogD(x)] + E,pp ) [log (1 — D(G(Z)))]

;A-.p data

7 70 7



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

GAN Training (cont’'d)
Pdata(x)

« Forfixed G, training D to the optimal classifier D;(x) = paata ()40 () IS

computationally expensive. Instead, training of ¢ and D is alternated
Wh Ile keepl ng D near Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of

steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our

optimal to give G better  eerimens.

for number of training iterations do

gradlentS [1 6] for k steps do

 Sample minibatch of m noise samples {z(V), ..., z(™)} from noise prior pg(2).

° Notice: G |S never tralned e Sample minibatch of m examples {x“),...,m(’")} from data generating distribution

paw(@). o

d | re Ctly on th e real d ata, e Update the dlscrlmmatormby ascending its stochastic gradient:
. 1§ i i
it only learns from the Voo 2 [log D (=) + 1o (1-2 (6 (=) )]
g rad e nt from D ﬂ owl ng :nSdafr?;le minibatch of m noise samples {z(1), ..., 2(™)} from noise prior p,(z).
ba Ckwa rd - Th | S p reve ntS o Update the generator by descending its stochastic gradient:
“ TR ” - I i

overfitting” and instead Ve, 2 ke (1-D (e (7))

allows G to branch beyond edsor

The gradient-based updates can use any standard gradient-based learning rule. We used momen-

th e real d ata tum in our experiments.
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THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

GAN Training Issues

« “Helvetica Scenario” aka Mode Collapse
« Situation in which ¢ fails to generalize its outputs and instead
produces all similar samples
« Often caused by G learning too fast relative to D, and so G
begins to favor generating a subset of the data but is unable to
escape the local minima once D continues learning

* Vanishing Gradient
« Often caused by D learning too fast relative to G in which D
can perfectly distinguish real/fake samples leaving G unable to
“catch up” in its generating ability leading to stagnation in G

Balancing G and D is difficult!

36



SNN-GAN

THE OHIO STATE UNIVERSITY
Generative Adversarial Networks (GANs) Overview

Extensions
« Conditional GAN (CGAN)

« Allows for specifying which class of data to be generated by
attaching a label to the latent input vector for G

Update the Generator model

--------------------------------------------
- -
- Y

Input vector
randomly

drawn from the (generated)
latent space \‘ Generator .~ example

-~
LY
.
A Y
L}
1
L]
1
/' Model F
Label Label ) Classification
: Discriminator aUtpHtfram the

—p discrimnator

Real example real / fake
taken from a .

Fake

problem %
domain P i o
Update the
Label Discriminator model
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THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Our approach (rep.)

* Using a spiking GAN, generate valid samples of
varying spike distributions

 Augmented dataset provides additional robustness
against samples different from the original training
set

* (Generated samples enrichen dataset without
additional manual collection of data (and exponential
growth for each different spike distribution)

38



THE OHIO STATE UNIVERSITY SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

(1) SNN classifier trained to convergence
(2) GAN trained using classifier weights to seed discriminator
(3) Trained GAN generator used to augment train dataset for further

classifier training |  gTART — — — —
FURTHER TRAIN
— b SNN CLASSIFIER
r INITIALIZE SNN 1
CLASSIFIER
I | I AUGMENT TRAIN
TRAIN SNN _I DATASET )
CLASSIFIER e
[ INTIALIZE GAN
DISCRIMINATOR
TRAIN GAN -I-
INITIALIZE GAN

GENERATOR

39



THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Our approach (cont’'d)

« During augmentation, samples are generated on an
as-needed basis determined by the relative class
performances

 Difficulty of correct classification is not uniform
across all classes of data — disproportionate
number of samples can achieve same overall
accuracy

40



THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Our approach (cont’'d)

« Three schemes used to determine the number of
additional samples needed for the next iteration:

1) equal: same number of samples across all classes

2) adhoc: only samples from the 3 worst performing
classes added

3) scale: number of samples added correlated to
relative performance of each class

41



THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Setup

 SLAYER [17] SNN training platform used

 CIFAR-10 training spike trains generated from
X~U(100,200) firing rate distribution using LIF (leaky
integrate-and-fire neuron) in Nengo [18] simulator

 Models evaluated on fewer spikes and more spikes
distributions — half (X~U(50,100)) and double
(X~U(200,400)) the number of spikes compared to
training distribution

42
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THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Training
* Our models quickly responded to the changing spike
distribution

100 Train Distribution Spikes Fewer Spikes
1 i i i | H ;

w
o
1

o

100

Train Accuracy
u
o

0] 20 40 60 80
—— Baseline —-= Baseline Test —— Optimal ——— Our approach [equal] —— Our approach [adhoc] —— Our approach [scale]
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THE OHIO STATE UNIVERSITY SNN-GAN

Dataset Augmentation for Robust Spiking Neural Networks

Testlng

All models perform worse as samples drifted further
from the training distribution

* Our models outperformed baseline classifier by an
average 1.80% and had an average 1.02% lesser
reduction in accuracy

Model Testing Spike Distribution
Fewer Spikes Train Dist. Spikes @ More Spikes
Baseline 37.76 = 0.34 52.67 = 0.31 42.73 = 0.52

Our approach [equal] 39.09 = 0.25 54.57 = 0.27 44 .07 = 0.52
Our approach [adhoc] 39.33 = 0.28 54.25 = 0.30 44.67 = 0.52

Our approach [scale] 38.52 = 0.39 94.05 = 0.32 43.51 = 0.29
44



THE OHIO STATE UNIVERSITY SNN-GAN
“‘Dataset Augmentation for Robust Spiking Neural Networks”

Outcomes

* Conventional SNN training methods do not ensure
generalization capabilities for temporal data

* Our results show improvements in model
robustness against dissimilar samples from the
training data

45
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THE OHIO STATE UNIVERSITY Current Work

“Generative Datasets for Training Spiking
Neural Networks”

« Expand datasets (N-MNSIT, CIFAR10-
DVS, DVSGesture)

« Expand frameworks
(Nengo Neural Engineering
Framework )

Ui
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Spatial Splitting
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 Why do NN models (including SNNs) need
so much data”?

* NN training has many pitfalls [19, 20],
better algorithm must exist (Foutse Khomh)

« MAJOR dependency on training data

Model performs poorly E=Ly7)
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Test set representative? 0j = ¢(net;)
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Dataset condensation [21]

« Rather than generating realistic samples,
generate “super” samples which don't
necessarily look real, but produce identical
gradient updates faster

Large training set

Large training set

Match Forwa d pass

Update | Loss
Backp opagation

synthetic set | i i

Small synthetic set

Comparable

i train E Etest

Small synthetic set
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Banana Church Sheepdog Flamingo French Horn Golden Retriever King Penguin Siamese Cat Strawberry Tiger

What about for SNNs?
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« Can our GAN approach be combined with
dataset condensation to generate “super”
samples”?

» (Can this approach be applied to
neuromorphic computing to compress the
already larger data-space?

* Can this approach condense different
spike distributions?
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Questions?
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