
Data-Aware Tuning of Deep
Learning Models

Anthony Baietto

Committee: Dr. Chris Stewart, Dr. Radu Teodorescu, Dr. Mi Zhang,
Dr. Atanas Rountev, Dr. Trevor Bihl (AFRL)

2

Outline
• Introduction

• Current Trends
• Research Goals

• Autowave
• Radar Waveform Design Overview
• “Lean Neural Networks for Autonomous Radar Waveform Design”
• “Lean Neural Networks for Real-time Embedded Spectral Notching

Waveform Design”

• SNN-GAN
• Spiking Neural Networks (SNNs) Overview
• Generative Adversarial Networks (GANs) Overview
• “Toward Robust Spiking Neural Networks”
• “Dataset Augmentation for Robust Spiking Neural Networks”

• Current & Future Work

Outline

3

• Neural Network (NN) popularity growing
very quickly [1]

• NN boasts superb non-linear function
approximation [2, 3, 4] applied to many
domains

Introduction

Current Trends

4

• NN dataset size
growing [5]

• NN model size
growing [6]

Introduction

Current Trends

NLP vision

5

• Harder problem → more data → larger model

• “1000 typewriting monkeys vs 1 Shakespeare”
• Trend is to keep adding blocks to black-box model
• Are they all necessary?
• Could design fewer more

intelligent modules

Introduction

Current Trends

6

• Leverage extant problem
information

• Reduce model footprint

• Reduce data footprint

Introduction

Research Goals

7

Outline
• Introduction

• Current Trends
• Research Goals

• Autowave
• Radar Waveform Design Overview
• “Lean Neural Networks for Autonomous Radar Waveform Design”
• “Lean Neural Networks for Real-time Embedded Spectral Notching

Waveform Design”

• SNN-GAN
• Spiking Neural Networks (SNNs) Overview
• Generative Adversarial Networks (GANs) Overview
• “Toward Robust Spiking Neural Networks”
• “Dataset Augmentation for Robust Spiking Neural Networks”

• Current & Future Work

Outline

8

Increased Wireless Spectrum Interference
• 4G/5G telecommunication networks
• Mobile sensors
• IoT devices

AutoWave
Radar Waveform Design Overview

9

Interference Mitigation with Spectral Notching
• Sample RF environment

• Determine interfered stopband

• Modify transmit waveform to avoid stopband

AutoWave
Radar Waveform Design Overview

10

• Difficult task with multiple constraints that must
be met for radar functionality and power
efficiency

• Trade-off between runtime/power and precision
• Want near real-time without sacrificing performance

AutoWave
Radar Waveform Design Overview

11

• Solutions must also be portable to different
hardware
• RFSoC FPGA (Radio Frequency System on Chip Field-Programmable Gate

Array) has fixed-point representation limit for example

AutoWave
Radar Waveform Design Overview

12

AutoWave
Radar Waveform Design Overview

“Intelligent
Design”

Hardware
Portability

End-to-EndLow SWaPWork

XX
Error Reduction

Algorithm (ERA) [7]

XX
Re-Iterative Uniform
Weight Optimization

Algorithm (RUWO) [8]

XXXMIMO GPU [9]

XXXTCNRWR [9]

XOnly outputXRVTDCNN [10]

XX
Autowave pre-

computed [11, 12, 13]

XXXXAutowave [AB1, AB2]

13

• AutoWave→ Artificial Intelligence (AI)
implementation of an adaptive radar system
which uses NN to adjust transmitted waveforms
to avoid sources of interference
• Treat RUWO as absolute, train NN to learn RUWO

• Naïve approach of simply throwing a larger NN
will not work

AutoWave
Radar Waveform Design Overview

14

Moving away from Mean Squared Error (MSE)

• Numerical comparisons between coefficient
vectors prone to errors

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

15

Tailor loss function to radar waveform design
1. Provide quicker learning to valid solutions compared to MSE
2. Encourage NN to always produce valid waveforms (even if not

identical to RUWO)
3. Discourage “close enough” waveforms which are similar but not

valid

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

16

Split processing into 2 parallel NN

• Quadrature radar waveforms are separate

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

17

Split processing into 2 parallel NN (cont’d)

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

18

CPU / GPU Simulation

RFSoC FPGA Open-Air Trials

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

19

Custom Loss

MSE

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

20

AutoWave
“Lean Neural Networks for Autonomous Radar Waveform Design”

21

• Specifically target low power embedded
devices (Raspberry Pi 3B)

AutoWave
“Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design”

22

AutoWave
“Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design”

Raspberry Pi 3B
Broadcom BCM2837, 1GB RAM

Latency (ms) Energy (J)

Dell r720
2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM

Latency (ms) Energy (J)
Algorithm

1510.5 ± 14.8453,965.43 ± 4131.61261.3 ± 6.51064.98 ± 10.94RUWO

6.5 ± 0.11982.04 ± 29.2745.5 ± 1.4185.47 ± 3.87ERA

0.6 ± 0.01230.98 ± 2.743.7 ± 0.323.19 ± 1.86NN MSE

0.6 ± 0.01233.92 ± 3.163.7 ± 0.120.72 ± 0.44
NN Tailored

Loss
Function

0.7 ± 0.01250.90 ± 0.634.1 ± 0.623.35 ± 0.29
NN Tailored

Network
Architecture

23

Outline
• Introduction

• Current Trends
• Research Goals

• Autowave
• Radar Waveform Design Overview
• “Lean Neural Networks for Autonomous Radar Waveform Design”
• “Lean Neural Networks for Real-time Embedded Spectral Notching

Waveform Design”

• SNN-GAN
• Spiking Neural Networks (SNNs) Overview
• Generative Adversarial Networks (GANs) Overview
• “Toward Robust Spiking Neural Networks”
• “Dataset Augmentation for Robust Spiking Neural Networks”

• Current & Future Work

Outline

24

Spiking Neural Networks (SNNs)
• Biologically inspired 3rd generation neural networks

• Neurons communicate via discrete pulses over time

• Great for time-series data

• SNN processing consumes less power when
realized on neuromorphic
hardware such as
Intel Loihi [15]

https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-
neuromorphic-loihi-2-lava-software.html#gs.4ve63w

SNN-GAN

Spiking Neural Networks (SNNs) Overview

25

• Operate on continuous
values

• Information propagates
instantaneously

• Operate on discrete spike
trains

• Must be run over a period
of time

ANNs vs SNNs

SNN-GAN

Spiking Neural Networks (SNNs) Overview

26

௝ ௜௝ ௜௜

௝ ௝

௝

డ௅ ௬,௢ೕ

డ௢ೕ

ௗఝ ௡௘௧ೕ

ௗ௡௘௧ೕ

௝௞ ௞௞
ௗఝ ௡௘௧ೕ

ௗ௡௘௧ೕ

௜௝ ௝ ௝

ANNs vs SNNs
• Input ௜ ௜

௙
௙

• ௜ ௜ 𝜖 𝑡 =
௧

ఛೞ

𝑒𝑥𝑝 1 −
௧

ఛೞ

Θ 𝑡

• ௜ v 𝑡 = −2𝜗𝑒𝑥𝑝 1 −
௧

ఛೝ
Θ 𝑡

• ௜ ௜ ௜௜

• ௦

• ௙ାଵ

• ௙ାଵ ௙

SNN-GAN

Spiking Neural Networks (SNNs) Overview

27

SNN Data
• SNNs operate on discrete spike trains

• Can be either generated from static data using
integrate-and-fire (IF) neurons
or captured directly using a
Dynamic Vision Sensor (DVS)
camera which produces event
data: https://inilabs.com/products/

SNN-GAN

Spiking Neural Networks (SNNs) Overview

28

Spike Distribution Dependencies
• For a given static image, there are a copious number

of valid spike trains which can be created/captured
depending on IF neuron parameters, DVS camera
settings, or lighting properties of the subject

• Surrogate gradient SNN training can fixate on the
intervals of training spikes leading to generalization
issues

SNN-GAN

Spiking Neural Networks (SNNs) Overview

29

Our approach
• Using a spiking GAN, generate valid samples of

varying spike distributions

• Augmented dataset provides additional robustness
against samples different from the original training
set

• Generated samples enrichen dataset without
additional manual collection of data (and exponential
growth for each different spike distribution)

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

30

Generative Adversarial Networks (GANs)
• Adversarial learning paradigm in which a generator

model synthesizes artificial samples, and a
discriminator model classifies samples as either
real or fake

• and “compete” against each other i.e., they are
playing a minimax
game to each better
themselves

SNN-GAN

Generative Adversarial Networks (GANs) Overview

31

Why GANs
• Most models are classifiers e.g., given an input ,

they predict a label thus estimating

• However, these models cannot estimate and
therefore cannot sample from i.e., they cannot
create new samples

• The combination of a traditional classifier model with
a new generative model unlocks new functionality

SNN-GAN

Generative Adversarial Networks (GANs) Overview

32

Generator
• The generator , often a deep neural network,

transforms an input noise vector into a realistic
sample
The goal of is to learn a mapping from some noisy
space to which approximates the real data
distribution

• Once sufficiently trained, e.g., can
generate arbitrary samples which appear to be real

SNN-GAN

Generative Adversarial Networks (GANs) Overview

33

Discriminator
• The discriminator , often a deep neural network or

Convolutional Neural Network (CNN) for images,
classifies input samples as either real (coming from
the real distribution) or fake (coming from)

• The goal of is to learn a mapping from an input
space (containing potentially both real & fake
samples) to [0, 1] where 0 asserts a sample is fake
and 1 asserts a sample is real

SNN-GAN

Generative Adversarial Networks (GANs) Overview

34

GAN Training
• and are trained simultaneously in which identifies areas in

which it can more easily identify fake samples

• These areas then become the focus for where updates its weights

• Given sufficient capacity, and converge to where ௚ ௗ௔௧௔ and
for all input

•
ீ ஽

௫~௣೏ೌ೟ೌ ௫ ௭~௣೥ ௭

SNN-GAN

Generative Adversarial Networks (GANs) Overview

35

GAN Training (cont’d)
• For fixed , training to the optimal classifier ீ

∗ ௣೏ೌ೟ೌ ௫

௣೏ೌ೟ೌ ௫ ା௣೒ ௫
is

computationally expensive. Instead, training of and is alternated
while keeping near
optimal to give better
gradients [16]

• Notice: is never trained
directly on the real data,
it only learns from the
gradient from flowing
backward. This prevents
“overfitting” and instead
allows to branch beyond
the real data

SNN-GAN

Generative Adversarial Networks (GANs) Overview

36

GAN Training Issues
• “Helvetica Scenario” aka Mode Collapse

• Situation in which fails to generalize its outputs and instead
produces all similar samples

• Often caused by learning too fast relative to , and so
begins to favor generating a subset of the data but is unable to
escape the local minima once continues learning

• Vanishing Gradient
• Often caused by learning too fast relative to in which

can perfectly distinguish real/fake samples leaving unable to
“catch up” in its generating ability leading to stagnation in

Balancing and is difficult!

SNN-GAN

Generative Adversarial Networks (GANs) Overview

37

Extensions
• Conditional GAN (CGAN)

• Allows for specifying which class of data to be generated by
attaching a label to the latent input vector for

SNN-GAN

Generative Adversarial Networks (GANs) Overview

38

Our approach (rep.)
• Using a spiking GAN, generate valid samples of

varying spike distributions

• Augmented dataset provides additional robustness
against samples different from the original training
set

• Generated samples enrichen dataset without
additional manual collection of data (and exponential
growth for each different spike distribution)

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

39

(1) SNN classifier trained to convergence

(2) GAN trained using classifier weights to seed discriminator

(3) Trained GAN generator used to augment train dataset for further
classifier training START

FURTHER TRAIN
SNN CLASSIFIER

INITIALIZE SNN
CLASSIFIER

TRAIN SNN
CLASSIFIER

INITIALIZE GAN
DISCRIMINATOR

INITIALIZE GAN
GENERATOR

TRAIN GAN

AUGMENT TRAIN
DATASET

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

40

Our approach (cont’d)
• During augmentation, samples are generated on an

as-needed basis determined by the relative class
performances

• Difficulty of correct classification is not uniform
across all classes of data → disproportionate
number of samples can achieve same overall
accuracy

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

41

Our approach (cont’d)
• Three schemes used to determine the number of

additional samples needed for the next iteration:

1) equal: same number of samples across all classes

2) adhoc: only samples from the 3 worst performing
classes added

3) scale: number of samples added correlated to
relative performance of each class

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

42

Setup
• SLAYER [17] SNN training platform used

• CIFAR-10 training spike trains generated from
firing rate distribution using LIF (leaky

integrate-and-fire neuron) in Nengo [18] simulator

• Models evaluated on fewer spikes and more spikes
distributions → half () and double
() the number of spikes compared to
training distribution

The work herein is the work of the authors and does not represent any position of the Air Force Research Laboratory, US Air Force, Department of Defense, or US Government. This work was approved for public release under case AFRL-2023-3911.

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

43

Training
• Our models quickly responded to the changing spike

distribution

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

44

Testing
• All models perform worse as samples drifted further

from the training distribution

• Our models outperformed baseline classifier by an
average 1.80% and had an average 1.02% lesser
reduction in accuracy

Testing Spike Distribution
Fewer Spikes Train Dist. Spikes More Spikes

Model

42.73 ± 0.5252.67 ± 0.3137.76 ± 0.34Baseline

44.07 ± 0.5254.57 ± 0.2739.09 ± 0.25Our approach [equal]

44.67 ± 0.5254.25 ± 0.3039.33 ± 0.28Our approach [adhoc]

43.51 ± 0.2954.05 ± 0.3238.52 ± 0.39Our approach [scale]

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

45

Outcomes
• Conventional SNN training methods do not ensure

generalization capabilities for temporal data

• Our results show improvements in model
robustness against dissimilar samples from the
training data

SNN-GAN
“Dataset Augmentation for Robust Spiking Neural Networks”

46

Outline
• Introduction

• Current Trends
• Research Goals

• Autowave
• Radar Waveform Design Overview
• “Lean Neural Networks for Autonomous Radar Waveform Design”
• “Lean Neural Networks for Real-time Embedded Spectral Notching

Waveform Design”

• SNN-GAN
• Spiking Neural Networks (SNNs) Overview
• Generative Adversarial Networks (GANs) Overview
• “Toward Robust Spiking Neural Networks”
• “Dataset Augmentation for Robust Spiking Neural Networks”

• Current & Future Work

Outline

47

“Generative Datasets for Training Spiking
Neural Networks”

• Expand datasets (N-MNSIT, CIFAR10-
DVS, DVSGesture)

• Expand frameworks
(Nengo Neural Engineering
Framework)

Current Work

48

Spatial Splitting

Temporal Splitting

Current Work

1ms 2ms 3ms 4ms 49ms 50ms

49

• Why do NN models (including SNNs) need
so much data?

• NN training has many pitfalls [19, 20],
better algorithm must exist (Foutse Khomh)

• MAJOR dependency on training data
• Model performs poorly

↓
Test set representative?

Future Work

50

Dataset condensation [21]

• Rather than generating realistic samples,
generate “super” samples which don’t
necessarily look real, but produce identical
gradient updates faster

Future Work

51

What about for SNNs?

Future Work

52

• Can our GAN approach be combined with
dataset condensation to generate “super”
samples?

• Can this approach be applied to
neuromorphic computing to compress the
already larger data-space?

• Can this approach condense different
spike distributions?

Future Work

Questions?

54

References
[AB1] Baietto, A.; Boubin, J.; Farr, P.; Bihl, T.J.; Jones, A.M.; Stewart, C. Lean Neural

Networks for Autonomous Radar Waveform Design. Sensors 2022, 22, 1317.
https://doi.org/10.3390/s22041317

[AB2] A. Baietto, J. Boubin, P. Farr and T. J. Bihl, "Lean Neural Networks for Real-time
Embedded Spectral Notching Waveform Design," 2022 IEEE 31st International
Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 2022, pp.
1121-1126, doi: 10.1109/ISIE51582.2022.9831772.

[AB3] Anthony Baietto, Christopher Stewart, Trevor J. Bihl. Toward Robust Spiking
Neural Networks. Poster presented at: International Conference on
Neuromorphic Systems, Santa Fe, NM, 2023

[AB4] Anthony Baietto, Christopher Stewart, Trevor J. Bihl. “Dataset Augmentation for
Robust Spiking Neural Networks”. IEEE International Conference on Autonomic
Computing and Self-Organizing Systems, Toronto, Canada, 2023

References

55

References
[1] A. Hemeida, S. Hassan, M. Al-Attar, S. Alkhalaf, M. Mahmoud, T. Senjyu, A. El-Din, and A.

Alsayyari, “Nature-inspired algorithms for feed-forward neural network classifiers: A survey of one
decade of research,” Ain Shams Engineering Journal, vol. 11, 01 2020.

[2] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of Control,

Signals, and Systems (MCSS), vol. 2, no. 4, pp. 303–314, Dec. 1989. [Online]. Available:
http://dx.doi.org/10.1007/BF02551274

[3] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal
approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0893608089900208

[4] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks, vol. 4,
no. 2, pp. 251–257, 1991. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/089360809190009T

[5] P. Villalobos and A. Ho, “Trends in training dataset sizes,” 2022, accessed: 2023-10-3. [Online].
Available: https://epochai.org/blog/trendsin-training-dataset-sizes

[6] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund, “Freely scalable and
reconfigurable optical hardware for deep learning,” Scientific Reports, vol. 11, 02 2021.

[7] Gerchberg, R.W. (1972) A Practical Algorithm for the Determination of Phase from Image and

Diffraction Plane Pictures. Optik, 35, 237-246.

References

56

References
[8] T. Higgins, T. Webster, and A. K. Shackelford, “Mitigating interference via spatial and spectra

nulling,” IET Radar, Sonar & Navigation, vol. 8, no. 2, pp. 84–93, 2014. [Online]. Available:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-rsn.2013.0194

[9] Liu, G., et al.: A GPU-based real-time processing system for frequency division multiple-input-
multiple-output radar. IET Radar Sonar Navig. 17(10), 1524–1537 (2023).
https://doi.org/10.1049/rsn2.12439

[10] Xia, Y., Ma, Z., Huang, Z.: Radar waveform recognition based on a two-stream convolutional
network and software defined radio. IET Radar Sonar Navig. 16(5), 837–851 (2022).
https://doi.org/10.1049/rsn2.12224

[11] R. Michev, Y. Shu, D. Werbunat, J. Hasch and C. Waldschmidt, "Adaptive Compensation of
Hardware Impairments in Digitally Modulated Radars Using ML-Based Behavioral Models," in IEEE
Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2023.3285438.

[12] J. Boubin, A. M. Jones, and T. Bihl, “Neurowav: Toward real-time waveform design for vanets using
neural networks,” in 2019 IEEE Vehicular Networking Conference (VNC), 2019, pp. 1–4.

[13] P. John-Baptiste, G. E. Smith, A. M. Jones, and T. Bihl, “Rapid waveform design through machine
learning,” in 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), 2019, pp. 659–663.

[14] P. Farr, A. M. Jones, T. Bihl, J. Boubin, and A. DeMange, “Waveform design implemented on
neuromorphic hardware,” in 2020 IEEE International Radar Conference (RADAR), 2020, pp. 934–
939.

References

57

References
[15] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam,

S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G.
Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore

processor with on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[16] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, & Yoshua Bengio. (2014). Generative Adversarial Networks.

[17] S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” 2018. [Online].
Available: https://arxiv.org/abs/1810.08646

[18] Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D., Choo, X.,
Voelker, A., & Eliasmith, C. (2014). Nengo: a Python tool for building large-scale functional brain
models. Frontiers in Neuroinformatics, 7(48), 1–13.

[19] Houssem Ben Braiek, & Foutse khomh. (2019). DeepEvolution: A Search-Based Testing Approach
for Deep Neural Networks.

[20] Houssem Ben Braiek, & Foutse Khomh. (2022). Testing Feedforward Neural Networks Training
Programs.

[21] Bo Zhao, Konda Reddy Mopuri, & Hakan Bilen. (2021). Dataset Condensation with Gradient
Matching.

References

