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Chapter 1 — Introduction

Motivation

Share of respondents who say their organizations have adopted Al in at least one function, 2017-23

Source: McKinsey & Company Survey, 2023 | Chart: 2024 Al Index report
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THE OHIO STATE UNIVERSITY Chapter 1 — Introduction

Thesis Statement

Successful neural network solutions require leveraging existing knowledge
found within extant solutions to provide hardware flexibility, unerring
resiliency, and superior performance with minimal regression. Specifically,
attentive design, implementation, and execution must be a part of neural
network development, including:

§1. Incorporation of existing problem-specific
information into neural network architecture choices.

§2. Emphasis on maintaining low SWaP (size, weight, and
power) solutions without sacrificing performance.

§3. Supplying self-correcting abilities via augmentative
training data.

§4. Providing equivalent robustness to tried and true
existing solutions.

§5. Insuring flexibility for deployment to the latest
hardware including neuromorphic processors. 4
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Contributions and Outline

Chapters 3, 4, 5:
Improving neural
network training data
through generative
augmentation

Chapter 6:
Improving neural
network initialization
for changes in hardware

Algorithm Neural Network Development
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/* Use sensors to collect dataset based on some objective */
procedure COLLECTDATA(sensors, criterion)

dataset + [ /[ Begin with empty dataset
while leriterion do /| Continue until some stopping criterion

dataset += CAPTURE(sensors) /| Append newly collected sample from sensors to dataset
end while

return dataset
end procedure

/* Given a list of options for each hyperparemter (# of layers, width of each layer, activation function per layer, etc.), select an
option and apply it to NN */
procedure BUILDNEURALNETWORK( hyperparameterOptions)

NN « {} /[ Create empty neural network

for hyperparameterOptions in hyperparametersOptions do /| Repeat for all available hyperparameters
choose hyperparameter € hyperparameterOptions // Select hyperparameter from options based on some criterion
APPLY (N N, hyperparameter)

end for

return NN
end procedure

/* Given a strucutre of a neural network, initialize each layer’s weights and overall optimizer */
procedure INITIALIZENEURALNETWORK(INN)

choose optimizer € [SGD, RMSprop, Adagrad, Adam, . . .] /[ Also select learning rate and optional momentum
for layer in NN do

INIT(layer) // INIT € [zeros, ones, uniform, normal, Xavier, Kaiming, . . .]
end for
return NN

end procedure

/* Given an initialized neural network and a dataset, train the neural network */
procedure TRAINNEURALNETWORK(N N, dataset)

end procedure

procedure MAIN
dataset + COLLECTDATA(...)
NN + BUILDNEURALNETWORK(...)
INITIALIZENEURALNETWORK (N V)
TRAINNEURALNETWORK(N N, dataset)
end procedure




THE OHIO STATE UNIVERSITY Chapter 1 - Introduction

Technical Motivation, Prior Work, and Expansion

Previous Related Activity This Research

* Neural Network Architecture * Neural Network Architecture
* Low-SWaP [7, 8, 9, 10, 11] * Low-SWaP [AB1] [AB2]
* End-to-End Pipeline [4, 5, 6] * End-to-End Pipeline [AB1] [AB2]
+ Hardware Portability [6, 7, 8, 9, 10, 11] * Hardware Portability [AB1] [AB2]
* Intelligent Design [4, 5, 6, 7] * Intelligent Design [AB1] [AB2]

* Neural Network Training Data * Neural Network Training Data
* Generative Spiking [14, 15, 16] » Generative Spiking [AB3] [AB4] [AB5]
* SNN Robustness [16, 17, 18, 19] * SNN Robustness [AB3] [AB5]
» Spike Viewpoint Encoding [16, 19] » Spike Viewpoint Encoding [AB3] [AB5]
» Adversarial Attacks [17, 18] * Neural Network Initialization

* Neural Network Initialization + Activation Substitution [AB6]
 Activation Substitution [20, 22, 23, 24, 25] * Post Correction [AB6]
» Post Correction [23, 24] » Arbitrary Architecture [AB6]
* Arbitrary Architecture [20, 22, 25] » Signal Processing

» Signal Processing * Lean ANNs [AB1] [AB2] [AB7] [AB8]

* Iterative process: ERA [4]
» Convex Optimization: RUWO [5]

[AB1] “Lean Neural Networks for Autonomous Radar Waveform Design” Sensors 2022

[AB2] “Lean Neural Networks for Real-time Embedded Spectral Nothing Waveform Design” IEEE ISIE 2022
[AB3] “Dataset Augmentation for Robust Spiking Neural Networks” IEEE ACSOS 2023

[AB4] “Generative Data for Neuromorphic Computing” HICSS 2025

[AB5] “Dataset Assembly for Training Spiking Neural Networks” Neurocomputing. In review

[AB6] “Generative Samples for Smooth Weight Transitioning to Spiking” In preparation
[AB7] “Method of Analyzing and Correcting a Dynamic Waveform Using Multivariate Error Loss Functions” IP 18/418,576

[AB8] “Method of Analyzing and Correcting a Dynamic Waveform by Real and Imaginary Partitioning and Recombination” IP 18/418,585
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THE OHIO STATE UNIVERSITY Neural Network Architecture

Radar Waveform Design

Increased Wireless Spectrum Interference
 4G/5G telecommunication networks
 Mobile sensors
 loT devices




THE OHIO STATE UNIVERSITY Neural Network Architecture

Radar Waveform Design

Interference Mitigation with Spectral Notching
« Sample RF environment

» Determine interfered stopband

* Modify transmit waveform to avoid stopband




THE OHIO STATE UNIVERSITY Neural Network Architecture

Radar Waveform Design

 Difficult task with multiple constraints that must
be met for radar functionality and power
efficiency

* Trade-off between runtime/power and precision

Want near real-time without sacrificing performance

/ Ideal Wave_fu_rm\
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THE OHIO STATE UNIVERSITY Neural Network Architecture

Radar Waveform Design

« Solutions must also be portable to different

hardware

. RFSoC FPGA (Radio Frequency System on Chip Field-Programmable Gate
Array) has fixed-point representation limit for example

CPU / GPU RF5oC FPGA
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THE OHIO STATE UNIVERSITY Neural Network Architecture

Radar Waveform Design

Work Low SWaP End-to-End Hardw_a_re Intelllgent
Portability Design
Errc_>r Reduction / y
Algorithm (ERA) [4]
Re-lterative Uniform
Weight Optimization V4 v
Algorithm (RUWO) [5]
MIMO GPU [6] V4 J J
TCNRWR [7] V4 J Y
RVTDCNN [8] J
Autowave pre- ¥

computed [9, 10, 11]

My work [Chapter 2,
Chapter 2.5] v v v v

12



Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

« AutoWave — Artificial Intelligence (Al)
implementation of an adaptive radar system
which uses neural networks to adjust transmitted

waveforms to avoid sources of interference
Treat RUWO as absolute, train NN to learn RUWO

* Nalive assumption: increasing neural network
size will result in better performance

Algorithm GPU Latency (pus) CPU Latency (us) Cosine Similarity  Null Depth (dBm)

NN MSE 1 Layer 747.71 £  5.23 786.44 £ 5.01 0.9901 £ 7.69 x 1075 28.54 = 0.16
NN MSE 2 Layers 749.40 £  5.61 797.92 £ 5.99 0.9900 £ 7.89 x 1075 20.17 = 0.22
NN MSE 3 Layers 797.72 £ 10.03 855.34 = 6.38 0.9808 + 9.87 x 10— 26.57 £ 0.23

13



Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

Moving away from Mean Squared Error (MSE)

* Numerical comparisons between coefficient
vectors prone to errors

14



Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

Tailor loss function to radar waveform design
1. Provide quicker learning to valid solutions compared to MSE
2. Discourage “close enough” waveforms which are similar but not
valid
3. Encourage neural network to always produce valid waveforms
(even if not identical to RUWO)

/ Ideal Waveform\
Characteristics @equcncy Domain Power\ /Time Domain AmplitmD / Phase \
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Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

Split processing into 2 parallel neural networks
« Quadrature radar waveforms are separate
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Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

Split processing into 2 parallel neural networks

Predict | Combine

Out=of-Phase
Network




Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

CPU / GPU Simulation

Algorithm Cosine Similarity Null Depth (dBm)
RUWO 1.0 + 0.0 20223 £ 0.0
ERA 0.9982 + 0.0 31.89 £ 0.0
NN MSE 0.9901 = 7.690 x 107 2854 &£ 0.16
NN Custom Loss 0.9780 + 0.53 x 10~ 2232 + 0.13
NN Split 0.9900 = 1.08 x 107 2075 £ 0.12
Algorithm Null Depth (dBm)
RUWO 33.62 £ 0.041
ERA 37.13 £ 0.057
NN MSE 28.17 =+ 0.213
NN Custom Loss 21.22 £ 0.138
NN Split 28.93 + 0.285

18



Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

Custom Loss
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Chapter 2 — “Lean Neural Networks for Autonomous Radar
Waveform Design” (§1,§2,§4)

Neural Network Architecture
THE OHIO STATE UNIVERSITY

Algorithm CPU Latency (us) GPU Latency (us) RFSoC Latency (us)

RUWO 806,347.0 + 11,860.82 649,581.0 =+ 33,168.78 10,060,000.0 £ 999.0
ERA 166,982.0 &+ 3465.06 641,441.0 =+ 20,921.13 1246.0 + 88

NN MSE 786.4 + 5.01 T47.71 £+ 5.23 217 £ 0.0
NN Custom Loss 762.8 £ 5.04 735.68 £+ 7.99 217 £ 0.0
NN Splht 1931.5 + 9.75 §23.63 £+ 6.76 3.7 £ 0.0
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Neural Network Architecture

Chapter 2.5 — “Lean Neural Networks for Real-time Embedded
Spectral Notching Waveform Design” (§2,85)

THE OHIO STATE UNIVERSITY

« Specifically target low power embedded
devices (Raspberry Pi 3B)

1.00

0.95
0.90
0.85
0.80

RUWO ERA NN
MSE C‘usmm Spht

'

Cosine Similarity

Null Depth | 202.2 31.9 28.5 22.3 29.8
(dBm)
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Neural Network Architecture
THE OHIO STATE UNIVERSITY

Chapter 2.5 — “Lean Neural Networks for Real-time Embedded
Spectral Notching Waveform Design” (§2,85)

Dell r720 Raspberry Pi 3B
A|gorithm 2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM Broadcom BCM2837, 1GB RAM
Latency (ms) Energy (J) Latency (ms) Energy (J)
RUWO 1064.98 +10.94 261.3+6.5 453,965.43 +4131.61 1510.5+14.8
ERA 185.47 + 3.87 455+ 1.4 1982.04 + 29.27 6.5+ 0.1
NN MSE 23.19 + 1.86 3.7+0.3 230.98 + 2.74 0.6 + 0.01
NN Tailored
Loss 20.72 + 0.44 3.7+ 0.1 233.92 £ 3.16 0.6 + 0.01
Function
NN Tailored
Network 23.35+0.29 41+0.6 250.90 + 0.63 0.7 £ 0.01

Architecture

22
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THE OHIO STATE UNIVERSITY Neural Network Training Data

Spiking Neural Networks (SNNs)

Splklng Neural Networks (SNNs)

Biologically inspired 3@ generation neural networks
 Neurons communicate via discrete pulses over time
« Great for time-series data

 SNN processing consumes less power when
realized on neuromorphic
hardware such as
Intel Loihi [12]

https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-
neuromorphic-loihi-2-lava-software.html#gs.4ve63w

24



THE OHIO STATE UNIVERSITY Neural Network Training Data

Spiking Neural Networks (SNNs)

ANNSs VS SNNSs

» QOperate on continuous * Operate on discrete spike
values x{, x5, ..., X, trains S, 5,, ..., S,

« Information propagates « Must be run over a period
iInstantaneously of time

Ll IR |||

. <1 Sz,<r n,<t

© 25



THE OHIO STATE UNIVERSITY Neural Network Training Data

Spiking Neural Networks (SNNs)

ANNSs VS SNNSs

E=LyYy) Input s;(t) =Zf6(t—t-(f))
net; = ),;w;ix; + b
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THE OHIO STATE UNIVERSITY Neural Network Training Data

Spiking Neural Networks (SNNs)

SNN Data

 SNNs operate on discrete spike trains

« Can be either generated from static data using
integrate-and-fire (IF) neurons
or captured directly using a
Dynamic Vision Sensor (DVS)
camera which produces event
data:

[x coordinate, y coordinate, t timestep, p polarity of light — intensity change]

27



Neural Network Training Data

Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

THE OHIO STATE UNIVERSITY

Spike Distribution Dependencies

* For a given static image, there are a copious number
of valid spike trains which can be created/captured
depending on IF neuron parameters, DVS camera
settings, or lighting properties of the subject

« Surrogate gradient SNN training can fixate on the
intervals of training spikes leading to generalization

Ims 2ms 3ms 4ms 50ms

o B EEA - -
28




THE OHIO STATE UNIVERSITY Neural Network Training Data

Spiking Neural Networks (SNNs)

Work Generative SNN Spike Adversarial
Spiking Robustness Viewpoint Attacks
Spiking-GAN [14] v
SpikeGAN [15] v
Deep CovDenseSNN [16] v v v (encoding)
Ozdenizci et al. [17] v
SNN-RAT [18] v/ v
StepRelLU [19] v v (encoding)
My work
[Chapter 3, Chapter 4, v v v
Chapter 5]

29



THE OHIO STATE UNIVERSITY Neural Network Training Data

Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

My approach

« Using a spiking GAN, generate valid samples of
varying spike distributions

 Augmented dataset provides additional robustness
against samples different from the original training
set

* Generated samples enrichen dataset without
additional manual collection of data and without
dataset growth for each possible spike distribution

30



THE OHIO STATE UNIVERSITY Neural Network Training Data

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANSs)

* Adversarial learning paradigm in which a generator
model ¢ synthesizes artificial samples, and a
discriminator model D classifies samples as either

real or fake
(G and D "compete” against each other i.e., they are
I Tal _ High = Real
playing a minimax ﬁ ——
game to each better — o
themselves e

Generator
Model Generated
Samples

Label




THE OHIO STATE UNIVERSITY Neural Network Training Data

Generative Adversarial Networks (GANs)

GAN Training

G and D are trained simultaneously in which D identifies areas in
which it can more easily identify fake samples

 These areas then become the focus for where ¢ updates its weights

«  Given sufficient capacity, G and D converge to where p, = pyqtq and
D(x) = 0.5 for all input

. mGin max V(D,G) = Expyppaoll08 D] + Ezp, () llog (1 - D(G (Z)))]

;ﬁpd ata

T 7 L

[13]




Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

THE OHIO STATE UNIVERSITY Neural Network Training Data

—~~
—
~—

SNN classifier trained to convergence
GAN trained using classifier weights to seed discriminator
Trained GAN generator used to augment train dataset for further

w N

classifier training = gTaART [r— — — —
FURTHER TRAIN
— e | e e SNN CLASSIFIER
I INITIALIZE SNN 1
CLASSIFIER I
! I AUGMENT TRAIN
I TRAIN SNN I L. DATASET
CLASSIFIER
INITIALIZE GAN I
DISCRIMINATOR }
TRAIN GAN  —
INITIALIZE GAN I
GENERATOR

———————J
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Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

THE OHIO STATE UNIVERSITY Neural Network Training Data

My approach (cont'd)
* During augmentation, samples are generated on an

as-needed basis determined by the relative class
performances

 Difficulty of correct classification is not uniform
across all classes of data — disproportionate
number of samples can achieve same overall
accuracy

34



Neural Network Training Data

Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

THE OHIO STATE UNIVERSITY

My approach (cont'd)

Three schemes used to determine the number of
additional samples needed for the next iteration:

1) equal: same number of samples across all classes

2) adhoc: only samples from the 3 worst performing
classes added

3) scale: number of samples added correlated to
relative performance of each class

35



THE OHIO STATE UNIVERSITY Neural Network Training Data

Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

Setup

CIFAR-10 training spike trains generated from
X~U(100,200) firing rate distribution using LIF (leaky
integrate-and-fire neuron) in Nengo [20] simulator
Models evaluated on fewer spikes and more spikes
distributions — half (X~U(50,100)) and double

(X~U(200,400)) the number of spikes compared to
training distribution

36



THE OHIO STATE UNIVERSITY Neural Network Training Data

Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

Training
* My models quickly responded to the changing spike

100 Train Distribution Spikes Fewer Spikes
I . . . r r r
I E E !
>\ 50_ 1 1 1 1 : : :
O | i i i i i i
© | i i i
—_ I i i i
8 0 i | H i H H
(U] Train Distribution Spikes More Spikes
< 100 I T T T T T T
=
©
o 50 A
|_
o T T T T T
0 20 40 60 80
Epoch
—— Baseline —-- Baseline Test = —— Optimal —— Our approach [equal] —— Our approach [adhoc] —— Our approach [scale]

37



THE OHIO STATE UNIVERSITY Neural Network Training Data

Chapter 3 — “Dataset Augmentation for Robust Spiking Neural
Networks” (§2,§3,§4)

Testing

* All models perform worse as samples drifted further
from the training distribution

* My models outperformed baseline classifier by an

average 1.80% and had an average 1.02% lesser
reduction in accuracy

Testing Spike Distribution
Model Fewer Train Dist. More
Spikes Spikes Spikes
Baseline 37.76 £0.34  52.67 £ 0.31  42.73 4+ 0.52

Our approach [equal] | 39.09 £ 0.25 54.57 + 0.27  44.07 £+ 0.52
Our approach [adhoc] | 39.33 + 0.28  54.25 + 0.30  44.67 + 0.52

Our approach [scale] | 38.52 + 0.39  54.05 £ 0.32  43.51 £ 0.29
38
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Chapter 4 — “Generative Data for Neuromorphic
Computing” (§2,85)

Objectlve

Address shortage of neuromorphic datasets

* Apply generative augmentation to natively spiking
dataset: IBM DVSGesture

* Unlock new SNN developments
with greater access to quality
spiking datasets

air drums
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Chapter 4 — “Generative Data for Neuromorphic
Computing” (§2,85)
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Chapter 4 — “Generative Data for Neuromorphic
Computing” (§2,85)

Neuromorphic Quality Metrics

* Frame Difference — cosine similarity between frames
« Sparsity — avg. number of events per pixel
* Density — avg. number of pixels firing per timestep

Frame Difference : Sparsity

-
-

L]

it :
i %ﬁ I#' SSEsee :
gi_ i ; gi Eun :lﬂ: "=m E:
l#:% N . E . i:fﬁ; : :::m = e |
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Chapter 4 — “Generative Data for Neuromorphic
Computing” (§2,85)

Sample Quality

* (Generative samples behave roughly similar to their
real counterparts

Dataset Frame Difference Sparsity Density
DVSGesture 0.07105 0.00152  0.00152
CGAN 1/4 DVSGesture 0.04033 0.00424  0.00424
CGAN 1/2 DVSGesture 0.00020 0.00030  0.00030
CGAN Entire DVSGesture 0.00010 0.00030  0.00030
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Chapter 4 — “Generative Data for Neuromorphic
Computing” (§2,85)

Sample Behavior in Training

* (Generative samples improved training performance

1/4 DVSGesture Dataset 1/2 DVSGesture Dataset
100 - — . 100 - .
1 1
901 90 1 | |
1 1
80 4 80 4
70 4 70 4
60 - X 60
9
50 4 © 50 4
=3
40 g 40
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30 A 30 4
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Chapter 5 — “Dataset Assembly for Training Spiking
Neural Networks” (§2,83,84)

Continuation of chapter 3

« Spike Viewpoint Dependencies in natively spiking
dataset: IBM DVSGesture

 DVSGesture contains lighting conditions:

Fluorescent
Fluorescent LED
LAB

LED
Natural
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Neural Network Training Data
Chapter 5 — “Dataset Assembly for Training Spiking

Neural Networks” (§2,83,84)

Lighting Condition Effects

START TARGET
FLUORESCENT FLUORESCENT LED LAB LED NATURAL

FLUORESCENT 79.80 73.33 7273 7879 72.23
FLUORESCENT LED 80.30 83.03 78.79  77.78 86.36
LAB 55.56 64.24 66.67 55.05 63.64
LED 69.70 76.97 7475 76.26 76.52
NATURAL 74.24 79.39 7273 78.28 78.79

Lighting Frame Difference Sparsity Density

FLUORESCENT 0.069 0.0015 0.0015

FLUORESCENT LED 0.0662 0.0014 0.0014

LAB 0.1008 0.0021 0.0021

LED 0.0592 0.0015 0.0015

NATURAL 0.06 0.0016 0.0016
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Chapter 5 — “Dataset Assembly for Training Spiking
Neural Networks” (§2,83,84)

Optimal Transport Dataset Distance (OTDD )y

FLUORESCENT FLUORESCENT LED LAB LED NATURAL
FLUORESCENT 0.03466 137, 741.798 166,953.851  139,224.688  143,26%8.443
FLUORESCENT LED 137,741.798 0.03466 164,983.994  137,254.965  141,306.234
LAB 166,953.851 164,983.994 0.03466 166,473.620  170,445.217
LED 139,224.688 137,254.965 166,473.620 0.03466 142.756.693
NATURAL 143,268.443 141,306.234 170,445.217  142,756.693 0.03466

FLUORESCENT FLUORESCENT LED LAB LED NATURAL
FLUORESCENT X 1.109 1.000  0.171 1.165
FLUORESCENT LED 0.381 X 0.494  0.736 -0.453
LAB 0.976 0.216 X 1.024 0.261
LED 1.079 -0.118 0.208 X -0.041
NATURAL 0.812 -0.109 0.909 0.091 X

Accuracy & OTDD correlation. Positive values indicate a decrease in accuracy from the starting lighting condition
with an increase in OTDD while negative values indicate the opposite. A larger magnitude indicates a larger
change in accuracy corresponding to a larger OTDD difference.
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Chapter 5 — “Dataset Assembly for Training Spiking
Neural Networks” (§2,83,84)

Helper Lighting (based on OTDD)

START HELPER TARGET

LIGHTING | FLUORESCENT FLUORESCENT LED LAB LED NATURAL

FLUORESCENT 0.00 9.09 1414 3.03 15.90

FLUORESCENT LED 4.04 0.00 5.05  6.57 2.27

LAB + TARGET 27.77 20.61 0.00 | 26.26 28.79

LED 16.16 4.24 9.09  0.00 12.688

NATURAL 14.14 6.06 10.10  5.05 0.00

FLUORESCENT 4.54 9.09 10.10  3.03 15.91

FLUORESCENT LED 6.06 -1.82 505  4.04 -0.76

LAB + CLOSEST 2777 20.00 1717  27.78 20.46

LED 16.66 5.46 9.09  8.08 9.09

NATURAL 12.12 3.64 7.07  4.55 9.85

FLUORESCENT 3.54 10.91 8.08  3.53 9.85

FLUORESCENT LED 3.03 1.51 1.01  5.05 -2.27

LAB + FURTHEST 33.33 27.28 16.16 = 32.32 18.94

LED 11.11 7.27 9.09  5.05 11.36

NATURAL 14.65 12.12 8.08  9.09 13.63

Helper Lighting Accuracy Improvement (%)
START + TARGET 9.65
START + CLOSEST 10.16
START + FURTHEST 10.96
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Chapter 5 — “Dataset Assembly for Training Spiking
Neural Networks” (§2,83,84)
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Chapter 5 — “Dataset Assembly for Training Spiking
Neural Networks” (§2,83,84)

Generative Augmentation

START HELPER TARGET

LIGHTING | FLUORESCENT FLUORESCENT LED LAB LED NATURAL

FLUORESCENT 1.52 6.67 505 0.00 5.30
FLUORESCENT LED 0.50 1.21 202 3.54 _

LAB + CGAN 6.59 10.30 9.09  8.08 6.06

LED 3.53 0.00 0.00 -2.02 6.06

NATURAL 4.55 3.64 6.06 -1.01 6.06

FLUORESCENT 5.55 12.12 1414 2.02 12.12

FLUORESCENT LED CGAN 4.55 6.06 808 6.06 0.76

LAB + & 29.29 27.88 15.15  29.80 28.03

LED FURTHEST 5.55 5.45 707 0.50 12.12

NATURAL 10.61 9.00 1212 4.04 12.88
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Chapter 5 — “Dataset Assembly for Training Spiking
Neural Networks” (§2,83,84)

accuracy—START qccurac y

100—accuracy

accuracy robustness (accuracy, START yccuracy) =

Approach Accuracy Robustness
START + TARGET 0.4451
START + CLOSEST 0.4598
START + FURTHEST 0.5108
START + CGAN 0.1613
START + CGAN + FURTHEST 0.5165
NOTHING -0.1848
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Chapter 6 — “Generative Samples for Smooth Weight
Transitioning to Spiking Neural Networks” (§3,§5)

Big Idea

 Want to run ANN on neuromorphic hardware without
needing to start from scratch SNN

* Need method for transitioning weights to higher
dimensional sample space

standard | ‘ ‘
camera |
time>

output:
L
B
. cve nt (e, e, .
‘._':-" %4 1.5:_‘: 5 ‘_t_‘,
camera L C
tpbut: g V v%f
output: ) 55
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Neural Network Initialization

Chapter 6 — “Generative Samples for Smooth Weight
Transitioning to Spiking Neural Networks” (§3,§5)

Work

Nengo [20]
Spikingjelly [22]
Bu et al. [23]
Hao et al. [24]
SpikeZIP-TF [25]
My work [Chapter 6]

Activation Arbitrary Post ANN

Substitution Architecture Correction Preservation
v v
v v

v (quantized) v

v (quantized) v

v (quantized) v
v v v v
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Chapter 6 — “Generative Samples for Smooth Weight
Transitioning to Spiking Neural Networks” (§3,§5)

Observation

« Raw weight copying failed, weight scale needed
* Accuracy degradation moving from ANN to SNN

Weight Copy
Dataset  Architecture | ANN Weight Copy —

Scale
2f 96.72 0.00 96.32
MNIST 2c2f 98.49 0.00 87.13
3c3f 96.95 0.00 82.69

Kuzushiji of | 91.46 0.00 065
MNIST 2021 96.98 0.00 84.97
3c3t 91.45 0.00 78.15
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Neural Network Initialization

Chapter 6 — “Generative Samples for Smooth Weight
Transitioning to Spiking Neural Networks” (§3,§5)

[=)]
o
1

a
o
1

ANN Weight Scaling Factor

Dataset  Architecture Best Scaling
Factor
2f 14.00 £+ 1.309
MNIST 2c2t 28.33 + 1.382
3c3t 39.00 £+ 2.760
' Kuzushiji of 17.71 £ 0.837
MNIST 2c2t 35.43 + 2.181
3c3t 47.43 + 1.757
MNIST 2c2f Kuzushiji-MNIST 2c2f
e
M .
j |
0 200 400 600 800 1000 0 200 400 600 800 1000

ANN Weight Scaling Factor
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Transitioning to Spiking Neural Networks” (§3,§5)
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Chapter 6 — “Generative Samples for Smooth Weight
Transitioning to Spiking Neural Networks” (§3,§5)

Neural Network Initialization
THE OHIO STATE UNIVERSITY

Observation

« Addition of GAN samples improves performance
during re-training across all architectures/datasets

Weight Copy Weight Copy Weight Copy New

Dataset  Architecture | ANN Weight Copy + + +
Scale Scale + re-Train Scale + re-Train + GAN SN
2f 96.72 0.00 96.32 89.08 90.78 90.94
MNIST 2c2f 98.49 0.00 87.13 87.16 91.38 87.75
3c3f 96.95 0.00 82.69 78.69 80.86 13.17
Kuzushiji 26 | 9146 000 9065 7492 7538 8167
MNIST 2c2f 96.98 0.00 84.97 30.31 42.06 78.25
3c3f 91.145 0.00 78.15 63.47 68.47 10.87
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THE OHIO STATE UNIVERSITY Conclusions

§1. Incorporation of existing problem-specific
information into neural network architecture choices.

* Chapter 2
§2. Emphasis on maintaining low SWaP (size, weight, and
power) solutions without sacrificing performance.

* Chapters 2-5
§3. Supplying self-correcting abilities via augmentative
training data.

* Chapters 3, 5, 6
§4. Providing equivalent robustness to tried and true
existing solutions.

* Chapters 2, 3,5
§5. Insuring flexibility for deployment to the latest

hardware including neuromorphic processors.

* Chapters 2,4, 6 64



THE OHIO STATE UNIVERSITY Future Work Opportunities

1. Applying generative augmentation to
spiking transformers (spiking LLMs)
* My work dealt with SNN simulations

* EXxplore generative augmentation
benefits on neuromorphic hardware

* |ncorporate latest transformer
architectures on SNN platforms
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2. Condensing my work for converting
algorithms to SNNs in a single step

* My work converts traditional algorithms
to intelligently designed ANNSs

My work also addressed converting
ANNs to SNNs

* As demand for SNNs increases, a single
step conversion could prove to be
important
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3. Incorporating code/text analysis for
automatic domain knowledge extraction
from existing software solutions

* My work "manually” extracted and domain
knowledge for inclusion in ANN design
(conversations, literature reading, etc.)

» Code analysis (existing software
solutions)

» Text analysis via LLMs (existing literature)
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Questions?
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