

Data-Aware Tuning of Deep Learning Models

Anthony Baietto

Committee: Dr. Chris Stewart, Dr. Trevor Bihl (AFRL) Dr. Radu Teodorescu, Dr. Mi Zhang

Chapter 1 – Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

Chapter 1 – Introduction Motivation

[3]

THE OHIO STATE UNIVERSITY

60%

50%

% of respondents 40%

30%

20%

10%

0%

Training dataset size (datapoints) 1e+10 1e+4 1e+4

1e+2

[3]

3

GPT-3 O

Transformer-XL

2020

ViT-G/14 凸

(C)

00

¢

¢.

000

ALBERT

GPT-2 Ó

2019

Xception设设

G 00

0

BERT

Successful neural network solutions require leveraging existing knowledge found within extant solutions to provide hardware flexibility, unerring resiliency, and superior performance with minimal regression. Specifically, attentive design, implementation, and execution must be a part of neural network development, including:

- §1. Incorporation of existing problem-specific information into neural network architecture choices.
- §2. Emphasis on maintaining low SWaP (size, weight, and power) solutions without sacrificing performance.
- §3. Supplying self-correcting abilities via augmentative training data.
- §4. **Providing equivalent robustness to tried and true existing solutions.**
- §5. Insuring flexibility for deployment to the latest hardware including neuromorphic processors.

	Algorithm Neural Network Development
Chapters 3, 4, 5: Improving neural network training data through generative augmentation	 /* Use sensors to collect dataset based on some objective */ procedure COLLECTDATA(sensors, criterion) dataset ← [] // Begin with empty dataset while !criterion do // Continue until some stopping criterion dataset += CAPTURE(sensors) // Append newly collected sample from sensors to dataset end while return dataset end procedure
Chapter 2: Improving neural network building using domain-specific information	9:10:/* Given a list of options for each hyperparemter (# of layers, width of each layer, activation function per layer, etc.), select an option and apply it to NN */11:procedure BUILDNEURALNETWORK(hyperparameterOptions)12: $NN \leftarrow \{\}$ 13:for hyperparameterOptions in hyperparametersOptions do (/ Create empty neural network)14:choose hyperparameter \in hyperparameterOptions (// Repeat for all available hyperparameters)15:APPLY(NN, hyperparameter)16:end for17:return NN18:end procedure
Chapter 6: Improving neural network initialization for changes in hardware	 19: 20: /* Given a strucutre of a neural network, initialize each layer's weights and overall optimizer */ 21: procedure INITIALIZENEURALNETWORK(NN) 22: choose optimizer ∈ [SGD, RMSprop, Adagrad, Adam,] // Also select learning rate and optional momentum 23: for layer in NN do 24: INIT(layer) // INIT ∈ [zeros, ones, uniform, normal, Xavier, Kaiming,] 25: end for 26: return NN 27: end procedure
	28: 29: /* Given an initialized neural network and a dataset, train the neural network */ 30: procedure TRAINNEURALNETWORK(NN , $dataset$) 31: 32: end procedure 33: 34: procedure MAIN 35: $dataset \leftarrow COLLECTDATA()$ 36: $NN \leftarrow BUILDNEURALNETWORK()$ 37: INITIALIZENEURALNETWORK(NN) 38: TRAINNEURALNETWORK(NN , $dataset$) 39: end procedure

THE OHIO STATE UNIVERSITY

Chapter 1 – Introduction Technical Motivation, Prior Work, and Expansion

Previous Related Activity

- Neural Network Architecture
 - Low-SWaP [7, 8, 9, 10, 11]
 - End-to-End Pipeline [4, 5, 6]
 - Hardware Portability [6, 7, 8, 9, 10, 11]
 - Intelligent Design [4, 5, 6, 7]
- Neural Network Training Data
 - Generative Spiking [14, 15, 16]
 - SNN Robustness [16, 17, 18, 19]
 - Spike Viewpoint Encoding [16, 19]
 - Adversarial Attacks [17, 18]
- Neural Network Initialization
 - Activation Substitution [20, 22, 23, 24, 25]
 - Post Correction [23, 24]
 - Arbitrary Architecture [20, 22, 25]
- Signal Processing
 - Iterative process: ERA [4]
 - Convex Optimization: RUWO [5]

This Research

- Neural Network Architecture
 - Low-SWaP [AB1] [AB2]
 - End-to-End Pipeline [AB1] [AB2]
 - Hardware Portability [AB1] [AB2]
 - Intelligent Design [AB1] [AB2]
- Neural Network Training Data
 - Generative Spiking [AB3] [AB4] [AB5]
 - SNN Robustness [AB3] [AB5]
 - Spike Viewpoint Encoding [AB3] [AB5]
- Neural Network Initialization
 - Activation Substitution [AB6]
 - Post Correction [AB6]
 - Arbitrary Architecture [AB6]
- Signal Processing
 - Lean ANNs [AB1] [AB2] [AB7] [AB8]

[AB1] "Lean Neural Networks for Autonomous Radar Waveform Design" Sensors 2022

- [AB2] "Lean Neural Networks for Real-time Embedded Spectral Nothing Waveform Design" IEEE ISIE 2022
- [AB3] "Dataset Augmentation for Robust Spiking Neural Networks" IEEE ACSOS 2023
- [AB4] "Generative Data for Neuromorphic Computing" HICSS 2025
- [AB5] "Dataset Assembly for Training Spiking Neural Networks" Neurocomputing. In review
- [AB6] "Generative Samples for Smooth Weight Transitioning to Spiking" In preparation
- [AB7] "Method of Analyzing and Correcting a Dynamic Waveform Using Multivariate Error Loss Functions" IP 18/418,576
- [AB8] "Method of Analyzing and Correcting a Dynamic Waveform by Real and Imaginary Partitioning and Recombination" IP 18/418,585

Chapter 1 – Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

Increased Wireless Spectrum Interference

- 4G/5G telecommunication networks
- Mobile sensors
- IoT devices

Interference Mitigation with Spectral Notching

- Sample RF environment
- Determine interfered stopband
- Modify transmit waveform to avoid stopband

- Difficult task with multiple constraints that must be met for radar functionality and power efficiency
- Trade-off between runtime/power and precision
 - Want near real-time without sacrificing performance

- Solutions must also be portable to different hardware
 - RFSoC FPGA (Radio Frequency System on Chip Field-Programmable Gate Array) has fixed-point representation limit for example

Work	Low SWaP	End-to-End	Hardware Portability	Intelligent Design
Error Reduction Algorithm (ERA) [4]		\checkmark		\checkmark
Re-Iterative Uniform Weight Optimization Algorithm (RUWO) [5]		\checkmark		\checkmark
MIMO GPU [6]		\checkmark	\checkmark	\checkmark
TCNRWR [7]	\checkmark		\checkmark	\checkmark
RVTDCNN [8]	\checkmark		\checkmark	
Autowave pre- computed [9, 10, 11]	\checkmark		\checkmark	
My work [Chapter 2, Chapter 2.5]	\checkmark	\checkmark	\checkmark	\checkmark

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

- AutoWave → Artificial Intelligence (AI) implementation of an adaptive radar system which uses neural networks to adjust transmitted waveforms to avoid sources of interference
 - Treat RUWO as absolute, train NN to learn RUWO
- Naive assumption: increasing neural network size will result in better performance

Algorithm	GPU Lat	$ency (\mu s)$	CPU Lat	$ency (\mu s)$	Cosin	e Similarity	Null Dep	pth (dBm)
NN MSE 1 Layer	747.71 \pm	5.23	786.44 \pm	5.01	0.9901	$\pm~7.69\times10^{-5}$	$28.54~\pm$	0.16
NN MSE 2 Layers	749.40 \pm	5.61	797.92 \pm	5.99	0.9900	\pm 7.89 × 10 ⁻⁵	$29.17~\pm$	0.22
NN MSE 3 Layers	797.72 \pm	10.03	$855.34~\pm$	6.38	0.9898	\pm 9.87 $ imes$ 10 ⁻⁵	$26.57~\pm$	0.23

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

Moving away from Mean Squared Error (MSE)

Numerical comparisons between coefficient vectors prone to errors

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

Tailor loss function to radar waveform design

- 1. Provide quicker learning to <u>valid</u> solutions compared to MSE
- 2. Discourage "close enough" waveforms which are similar but not <u>valid</u>
- 3. Encourage neural network to always produce <u>valid</u> waveforms (even if not identical to RUWO)

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

Split processing into 2 parallel neural networks

• Quadrature radar waveforms are <u>separate</u>

		I+Q		
TAmpiltude (V)	Q Amplitude (V)	Amplitude (V)	Phase (°)	
1	0	1	0	
0	1	1	90	
-1	0	1	180	
0	-1	1	270	

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

Split processing into 2 parallel neural networks

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

CPU / GPU Simulation

Algorithm	Cosine Similarity	Null Depth (dBm)
RUWO	1.0 ± 0.0	202.23 ± 0.0
ERA	0.9982 ± 0.0	31.89 ± 0.0
NN MSE	$0.9901~\pm~7.69 imes10^{-5}$	28.54 ± 0.16
NN Custom Loss	$0.9789~\pm~9.53 imes10^{-5}$	22.32 ± 0.13
NN Split	$0.9900~\pm~1.08\times10^{-4}$	29.75 ± 0.12

RFSoC FPGA Open-Air Trials

Algorithm	Null Depth (dBm)
RUWO	33.62 ± 0.041
ERA	37.13 ± 0.057
NN MSE	28.17 ± 0.213
NN Custom Loss	21.22 ± 0.138
NN Split	28.93 ± 0.285

THE OHIO STATE UNIVERSITY

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

19

Chapter 2 – "Lean Neural Networks for Autonomous Radar Waveform Design" (§1,§2,§4)

Algorithm	CPU Laten	$cy (\mu s)$	GPU La	\mathbf{ter}	ncy (µs)	RFSoC Lat	enc	y (µs)
RUWO	$806,347.0 \pm 1$	1,860.82	649,581.0	±	33,168.78	10,060,000.0	±	999.0
ERA	$166,\!982.0~\pm$	3465.06	$641,\!441.0$	±	20,921.13	1246.0	±	8.8
NN MSE	786.4 \pm	5.01	747.71	±	5.23	21.7	±	0.0
NN Custom Loss	$762.8~\pm$	5.04	735.68	±	7.99	21.7	±	0.0
NN Split	$1931.5~\pm$	9.75	823.63	±	6.76	13.7	±	0.0

Chapter 2.5 – "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

 Specifically target low power embedded devices (Raspberry Pi 3B)

Chapter 2.5 – "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

Algorithm	Dell r 2x Intel E5-2670, NVIDIA (Latency (ms)	720 5T 1030, 144GB RAM Energy (J)	Raspberry F Broadcom BCM2837, 10 Latency (ms)	Pi 3B GB RAM Energy (J)
RUWO	1064.98 ± 10.94	261.3 ± 6.5	$453,\!965.43\pm4131.61$	1510.5 ± 14.8
ERA	185.47 ± 3.87	45.5 ± 1.4	1982.04 ± 29.27	6.5 ± 0.1
NN MSE	23.19 ± 1.86	$\textbf{3.7} \pm \textbf{0.3}$	$\textbf{230.98} \pm \textbf{2.74}$	$\textbf{0.6} \pm \textbf{0.01}$
NN Tailored Loss Function	$\textbf{20.72} \pm \textbf{0.44}$	$\textbf{3.7} \pm \textbf{0.1}$	233.92 ± 3.16	0.6 ± 0.01
NN Tailored Network Architecture	23.35 ± 0.29	4.1 ± 0.6	250.90 ± 0.63	0.7 ± 0.01

Chapter 1 – Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

Spiking Neural Networks (SNNs)

- Biologically inspired 3rd generation neural networks
- Neurons communicate via discrete pulses over time
- Great for time-series data
- SNN processing consumes less power when realized on neuromorphic hardware such as Intel Loihi [12]

https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-neuromorphic-loihi-2-lava-software.html#gs.4ve63w

ANNs vs

- Operate on continuous values $x_1, x_2, ..., x_n$
- Information propagates
 instantaneously

SNNs

- Operate on discrete spike trains S_1, S_2, \dots, S_n
- Must be run over a period of time

THE OHIO STATE UNIVERSITY

ANNs vs

 $E = L(y, \hat{y})$ $net_j = \sum_i w_{ij} x_i + b$ $o_j = \varphi(net_j)$

$$\delta_{j} = \begin{cases} \frac{\partial L(y,o_{j})}{\partial o_{j}} \frac{d\varphi(net_{j})}{dnet_{j}} & j \text{ output} \\ \left(\sum_{k} w_{jk} \delta_{k}\right) \frac{d\varphi(net_{j})}{dnet_{j}} & j \text{ hidden} \end{cases}$$

 $\Delta w_{ij} = -\eta o_j \delta_j$

SNNs Input $s_i(t) = \sum_f \delta(t - t_i^{(f)})$ $a_i(t) = (\epsilon * s_i)(t) \quad \epsilon(t) = \frac{t}{\tau} \exp\left(1 - \frac{t}{\tau}\right) \Theta(t)$ $v_i(t) = (v * s)(t)$ $v_{(t)} = -2\vartheta exp(1-\frac{t}{\tau_n})\Theta(t)$ $u(t) = \sum_{i} w_{i} a_{i}(t) + v_{i}(t)$ $f_{s}(u): u \to s$ $s(t) \coloneqq s(t) + \delta(t - t^{(f+1)})$ $t^{(f+1)} = \min\{t : u(t) = \vartheta, t > t^{(f)}\}$ u(t)θ u_{rest} 26 refractory period

SNN Data

- SNNs operate on discrete spike trains
- Can be either generated from static data using integrate-and-fire (IF) neurons or captured directly using a Dynamic Vision Sensor (DVS) camera which produces event data:

[*x* coordinate, *y* coordinate, *t* timestep, *p* polarity of light – intensity change]

Spike Distribution Dependencies

- For a given static image, there are a copious number of valid spike trains which can be created/captured depending on IF neuron parameters, DVS camera settings, or lighting properties of the subject
- Surrogate gradient SNN training can fixate on the intervals of training spikes leading to generalization

issues

Work	Generative Spiking	SNN Robustness	Spike Viewpoint	Adversarial Attacks
Spiking-GAN [14]	\checkmark			
SpikeGAN [15]	\checkmark			
Deep CovDenseSNN [16]	\checkmark	\checkmark	√ (encoding)	
Ozdenizci et al. [17]		\checkmark		\checkmark
SNN-RAT [18]		\checkmark		\checkmark
StepReLU [19]		\checkmark	\checkmark (encoding)	
My work [Chapter 3, Chapter 4, Chapter 5]	\checkmark	\checkmark	\checkmark	

Chapter 3 – "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)

My approach

- Using a spiking <u>GAN</u>, generate valid samples of varying spike distributions
- Augmented dataset provides additional robustness against samples different from the original training set
- Generated samples enrichen dataset without additional manual collection of data and without dataset growth for each possible spike distribution

Generative Adversarial Networks (GANs)

- Adversarial learning paradigm in which a generator model *G* synthesizes artificial samples, and a discriminator model *D* classifies samples as either real or fake
- G and D "compete" against each other i.e., they are playing a minimax High Real Real Dimensional Discriminator Sample Samples Model Space game to each better DLabel Fake themselves

GAN Training

- *G* and *D* are trained simultaneously in which *D* identifies areas in which it can more easily identify fake samples
- These areas then become the focus for where *G* updates its weights
- Given sufficient capacity, *G* and *D* converge to where $p_g \approx p_{data}$ and D(x) = 0.5 for all input

Neural Network Training Data

Chapter 3 – "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)

- (1) SNN classifier trained to convergence
- (2) GAN trained using classifier weights to seed discriminator
- (3) Trained GAN generator used to augment train dataset for further classifier training

My approach (cont'd)

- During augmentation, samples are generated on an as-needed basis determined by the relative class performances
- Difficulty of correct classification is not uniform across all classes of data → disproportionate number of samples can achieve same overall accuracy

My approach (cont'd)

- Three schemes used to determine the number of additional samples needed for the next iteration:
 - 1) equal: same number of samples across all classes
 - 2) **adhoc**: only samples from the 3 worst performing classes added
 - 3) **scale**: number of samples added correlated to relative performance of each class

Setup

- CIFAR-10 training spike trains generated from X~U(100, 200) firing rate distribution using LIF (leaky integrate-and-fire neuron) in Nengo [20] simulator
- Models evaluated on **fewer** spikes and **more** spikes distributions \rightarrow half ($X \sim U(50, 100)$) and double ($X \sim U(200, 400)$) the number of spikes compared to training distribution

Chapter 3 – "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)

Training

• My models quickly responded to the changing spike distribution

Neural Network Training Data Chapter 3 – "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)

Testing

- All models perform worse as samples drifted further from the training distribution
- My models outperformed baseline classifier by an average 1.80% and had an average 1.02% lesser reduction in accuracy

Model	Testing Spike Distribution				
woder	Fewer Train Dist.		More		
	${f Spikes}$	${f Spikes}$	${f Spikes}$		
Baseline	37.76 ± 0.34	52.67 ± 0.31	42.73 ± 0.52		
Our approach [equal]	39.09 ± 0.25	54.57 ± 0.27	44.07 ± 0.52		
Our approach [adhoc]	39.33 ± 0.28	54.25 ± 0.30	44.67 ± 0.52		
Our approach [scale]	38.52 ± 0.39	54.05 ± 0.32	43.51 ± 0.29		
			38		

Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

• Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

Chapter 4 – "Generative Data for Neuromorphic Computing" (§2,§5)

Objective

- Address shortage of neuromorphic datasets
- Apply generative augmentation to natively spiking dataset: IBM DVSGesture
- Unlock new SNN developments with greater access to quality spiking datasets

air drums

The Ohio State University

Neural Network Training Data

Chapter 4 – "Generative Data for Neuromorphic Computing" (§2,§5)

Neuromorphic Quality Metrics

- Frame Difference cosine similarity between frames
- Sparsity avg. number of events per pixel
- Density avg. number of pixels firing per timestep

Chapter 4 – "Generative Data for Neuromorphic Computing" (§2,§5)

Sample Quality

Generative samples behave roughly similar to their real counterparts

Dataset	Frame Difference	Sparsity	Density
DVSGesture	0.07105	0.00152	0.00152
CGAN 1/4 DVSGesture	0.04033	0.00424	0.00424
$CGAN \ 1/2 \ DVSGesture$	0.00020	0.00030	0.00030
CGAN Entire DVSGesture	0.00010	0.00030	0.00030

Neural Network Training Data Chapter 4 – "Generative Data for Neuromorphic Computing" (§2,§5)

Sample Behavior in Training

Generative samples improved training performance

Chapter 1 – Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

• Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Continuation of chapter 3

- Spike Viewpoint Dependencies in natively spiking dataset: IBM DVSGesture
- DVSGesture contains lighting conditions:
 - Fluorescent
 - Fluorescent LED
 - LAB
 - LED
 - Natural

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Lighting Condition Effects

	TARGET					
SIAKI	FLUORESCENT	FLUORESCENT LED	LAB	\mathbf{LED}	NATURAL	
FLUORESCENT	79.80	73.33	72.73	78.79	72.23	
FLUORESCENT LED	80.30	83.03	78.79	77.78	86.36	
\mathbf{LAB}	55.56	$\overline{64.24}$	66.67	55.05	63.64	
\mathbf{LED}	69.70	76.97	74.75	76.26	76.52	
NATURAL	74.24	79.39	72.73	78.28	78.79	

$\mathbf{Lighting}$	Frame Difference	Sparsity	Density
FLUORESCENT	0.069	0.0015	0.0015
FLUORESCENT LED	0.0662	0.0014	0.0014
\mathbf{LAB}	0.1008	0.0021	0.0021
\mathbf{LED}	0.0592	0.0015	0.0015
NATURAL	0.06	0.0016	0.0016

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Optimal Transport Dataset Distance (OTDD)[21]

	FLUORESCENT	FLUORESCENT LED	\mathbf{LAB}	\mathbf{LED}	NATURAL
FLUORESCENT	0.03466	137,741.798	$166,\!953.851$	139,224.688	$143,\!268.443$
FLUORESCENT LED	137,741.798	0.03466	$164,\!983.994$	$137,\!254.965$	$141,\!306.234$
\mathbf{LAB}	$166,\!953.851$	$164,\!983.994$	0.03466	$166,\!473.620$	$170,\!445.217$
\mathbf{LED}	139,224.688	$137,\!254.965$	$166,\!473.620$	0.03466	142,756.693
NATURAL	$143,\!268.443$	$141,\!306.234$	$170,\!445.217$	142,756.693	0.03466

	FLUORESCENT	FLUORESCENT LED	LAB	\mathbf{LED}	NATURAL
FLUORESCENT	Х	1.109	1.000	0.171	1.165
FLUORESCENT LED	0.381	Х	0.494	0.736	-0.453
\mathbf{LAB}	0.976	0.216	Х	1.024	0.261
\mathbf{LED}	1.079	-0.118	0.208	Х	-0.041
NATURAL	0.812	-0.109	0.909	0.091	Х

Accuracy & OTDD correlation. Positive values indicate a decrease in accuracy from the starting lighting condition with an increase in OTDD while negative values indicate the opposite. A larger magnitude indicates a larger change in accuracy corresponding to a larger OTDD difference.

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Helper Lighting (based on OTDD)

	HELPER	TARGET				
SIARI	LIGHTING	FLUORESCENT	FLUORESCENT LED	LAB	LED	NATURAL
FLUORESCENT		0.00	9.09	14.14	3.03	15.90
FLUORESCENT LED		4.04	0.00	5.05	6.57	2.27
LAB	+ TARGET	27.77	20.61	0.00	26.26	28.79
LED		16.16	4.24	9.09	0.00	12.88
NATURAL		14.14	6.06	10.10	5.05	0.00
FLUORESCENT		4.54	9.09	10.10	3.03	15.91
FLUORESCENT LED		6.06	-1.82	5.05	4.04	-0.76
LAB	+ CLOSEST	27.77	20.00	17.17	27.78	20.46
LED		16.66	5.46	9.09	8.08	9.09
NATURAL		12.12	3.64	7.07	4.55	9.85
FLUORESCENT		3.54	10.91	8.08	3.53	9.85
FLUORESCENT LED		3.03	1.81	1.01	5.05	-2.27
LAB	+ FURTHEST	33.33	27.28	16.16	32.32	18.94
LED		11.11	7.27	9.09	5.05	11.36
NATURAL		14.65	12.12	8.08	9.09	13.63

Helper Lighting	Accuracy Improvement (%)	
START + TARGET	9.65	
START + CLOSEST	10.16	10
START + FURTHEST	10.96	

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Generative Augmentation

	HELPER	TARGET				
SIANI	LIGHTING	FLUORESCENT	FLUORESCENT LED	LAB	LED	NATURAL
FLUORESCENT		1.52	6.67	5.05	0.00	5.30
FLUORESCENT LED		0.50	1.21	2.02	3.54	-4.54
\mathbf{LAB}	+ CGAN	6.59	10.30	9.09	8.08	6.06
LED		3.53	0.00	0.00	-2.02	6.06
NATURAL		4.55	3.64	6.06	-1.01	6.06
FLUORESCENT		5.55	12.12	14.14	2.02	12.12
FLUORESCENT LED	\mathbf{CGAN}	4.55	6.06	8.08	6.06	0.76
\mathbf{LAB}	+ &	29.29	27.88	15.15	29.80	28.03
LED	FURTHEST	5.55	5.45	7.07	0.50	12.12
NATURAL		10.61	9.09	12.12	4.04	12.88

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Chapter 5 – "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

accuracy robustness $(accuracy, START_{accuracy}) = \frac{accuracy - START_{accuracy}}{100 - accuracy}$

Approach	Accuracy Robustness
START + TARGET	0.4451
START + CLOSEST	0.4598
START + FURTHEST	0.5108
START + CGAN	0.1613
START + CGAN + FURTHEST	0.5165
NOTHING	-0.1848

Chapter 1 – Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Big Idea

- Want to run ANN on neuromorphic hardware without needing to start from scratch SNN
- Need method for transitioning weights to higher dimensional sample space

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Work	Activation Substitution	Arbitrary Architecture	Post Correction	ANN Preservation
Nengo [20]	\checkmark	\checkmark		
Spikingjelly [22]	\checkmark	\checkmark		
Bu et al. [23]	\checkmark (quantized)		\checkmark	
Hao et al. [24]	\checkmark (quantized)		\checkmark	
SpikeZIP-TF [25]	\checkmark (quantized)	\checkmark		
My work [Chapter 6]	\checkmark	\checkmark	\checkmark	\checkmark

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Observation

- Raw weight copying failed, weight scale needed
- Accuracy degradation moving from ANN to SNN

				Weight Copy
Dataset	Architecture	ANN	Weight Copy	+
				Scale
	2f	96.72	0.00	96.32
MNIST	2c2f	98.49	0.00	87.13
	3c3f	96.95	0.00	82.69
Kuzushiji	2f	91.46	0.00	90.65
MNIST	2c2f	96.98	0.00	84.97
	3c3f	91.45	0.00	78.15

THE OHIO STATE UNIVERSITY

Neural Network Initialization

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Dataset	Architecture	Best Scaling	
		Factor	
	$2\mathrm{f}$	14.00 ± 1.309	
MNIST	2c2f	28.33 ± 1.382	
	3c3f	39.00 ± 2.760	
Kuzushiji	$2\mathrm{f}$	17.71 ± 0.837	
MNIST	2c2f	35.43 ± 2.181	
	3c3f	47.43 ± 1.757	

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Step 1 – Copy weights & train GAN

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Step 2 – Store layer activations

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Step 3 – Generate unique samples

Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Observation

 Addition of GAN samples improves performance during re-training across all architectures/datasets

Dataset	Architecture	ANN	Weight Copy	Weight Copy + Scale	Weight Copy + Scale + re-Train	Weight Copy + Scale + re-Train + GAN	New SNN
	2f	96.72	0.00	96.32	89.08	90.78	90.94
MNIST	2c2f	98.49	0.00	87.13	87.16	91.38	87.75
	3c3f	96.95	0.00	82.69	78.69	80.86	13.17
Kuzushiji	2f	91.46	0.00	90.65	74.92	75.38	81.67
MNIST	2c2f	96.98	0.00	84.97	30.31	42.06	78.25
	3c3f	91.45	0.00	78.15	63.47	68.47	10.87

Chapter 1 – Introduction

- Motivation
- Thesis Statement
- Contributions and Outline

Neural Network Architecture

- Chapter 2 "Lean Neural Networks for Autonomous Radar Waveform Design" (§1, §2,§4)
- Chapter 2.5 "Lean Neural Networks for Real-time Embedded Spectral Notching Waveform Design" (§2,§5)

Neural Network Training Data

- Chapter 3 "Dataset Augmentation for Robust Spiking Neural Networks" (§2,§3,§4)
- Chapter 4 "Generative Data for Neuromorphic Computing" (§2,§5)
- Chapter 5 "Dataset Assembly for Training Spiking Neural Networks" (§2,§3,§4)

Neural Network Initialization

 Chapter 6 – "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks" (§3,§5)

Conclusions & Future Work Opportunities

§1. Incorporation of existing problem-specific information into neural network architecture choices.

Chapter 2

§2. Emphasis on maintaining low SWaP (size, weight, and power) solutions without sacrificing performance.

Chapters 2 – 5

§3. Supplying self-correcting abilities via augmentative training data.

• Chapters 3, 5, 6

§4. **Providing equivalent robustness to tried and true existing solutions.**

• Chapters 2, 3, 5

§5. Insuring flexibility for deployment to the latest hardware including neuromorphic processors.

• Chapters 2, 4, 6

- 1. Applying generative augmentation to spiking transformers (spiking LLMs)
 - My work dealt with SNN simulations
 - Explore generative augmentation benefits on neuromorphic hardware
 - Incorporate latest transformer
 architectures on SNN platforms

- 2. Condensing my work for converting algorithms to SNNs in a single step
 - My work converts traditional algorithms to intelligently designed ANNs
 - My work also addressed converting ANNs to SNNs
 - As demand for SNNs increases, a single step conversion could prove to be important

- Incorporating code/text analysis for automatic domain knowledge extraction from existing software solutions
 - My work "manually" extracted and domain knowledge for inclusion in ANN design (conversations, literature reading, etc.)
 - Code analysis (existing software solutions)
 - Text analysis via LLMs (existing literature)

Questions?

- [Chapter 2] Baietto, A.; Boubin, J.; Farr, P.; Bihl, T.J.; Jones, A.M.; Stewart, C. Lean Neural Networks for Autonomous Radar Waveform Design. Sensors 2022, 22, 1317. https://doi.org/10.3390/s22041317
- [Chapter 2.5] A. Baietto, J. Boubin, P. Farr and T. J. Bihl, "Lean Neural Networks for Realtime Embedded Spectral Notching Waveform Design," 2022 IEEE 31st International Symposium on Industrial Electronics (ISIE), Anchorage, AK, USA, 2022, pp. 1121-1126, doi: 10.1109/ISIE51582.2022.9831772.
- [Chapter 3] Anthony Baietto, Christopher Stewart, Trevor J. Bihl. "Dataset Augmentation for Robust Spiking Neural Networks". IEEE International Conference on Autonomic Computing and Self-Organizing Systems, Toronto, Canada, 2023
- [Chapter 4] Anthony Baietto, Trevor J. Bihl. "Generative Data for Neuromorphic Computing". Hawaii International Conference on Systems Sciences, Waikoloa Village, Big Island, HI, USA, 2025
- [Chapter 5] "Dataset Assembly for Training Spiking Neural Networks", Neurocomputing. Under review.
- [Chapter 6] "Generative Samples for Smooth Weight Transitioning to Spiking Neural Networks". In preparation.

- [1] N. Maslej, L. Fattorini, R. Perrault, V. Parli, A. Reuel, E. Brynjolfsson, J. Etchemendy, K. Ligett, T. Lyons, J. Manyika, J. C. Niebles, Y. Shoham, R. Wald, and J. Clark, "Artificial intelligence index report 2024," 2024.
- [2] L. Bernstein, A. Sludds, R. Hamerly, V. Sze, J. Emer, and D. Englund, "Freely scalable and reconfigurable optical hardware for deep learning," Sci-entific Reports, vol. 11, 02 2021.
- P. Villalobos and A. Ho, "Trends in training dataset sizes," 2022. Accessed:2023-10-3. [3]
- [4] Gerchberg, R.W. (1972) A Practical Algorithm for the Determination of Phase from Image and Diffraction Plane Pictures. Optik, 35, 237-246.
- [5] T. Higgins, T. Webster, and A. K. Shackelford, "Mitigating interference via spatial and spectra nulling," IET Radar, Sonar & Navigation, vol. 8, no. 2, pp. 84–93, 2014. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-rsn.2013.0194
- Liu, G., et al.: A GPU-based real-time processing system for frequency division multiple-input-[6] multiple-output radar. IET Radar Sonar Navig. 17(10), 1524–1537 (2023). https://doi.org/10.1049/rsn2.12439
- [7] Xia, Y., Ma, Z., Huang, Z.: Radar waveform recognition based on a two-stream convolutional network and software defined radio. IET Radar Sonar Navig. 16(5), 837–851 (2022). https://doi.org/10.1049/rsn2.12224
- [8] R. Michev, Y. Shu, D. Werbunat, J. Hasch and C. Waldschmidt, "Adaptive Compensation of Hardware Impairments in Digitally Modulated Radars Using ML-Based Behavioral Models," in IEEE Transactions on Microwave Theory and Techniques, doi: 10.1109/TMTT.2023.3285438.

71

- [9] J. Boubin, A. M. Jones, and T. Bihl, "Neurowav: Toward real-time waveform design for vanets using neural networks," in 2019 IEEE Vehicular Networking Conference (VNC), 2019, pp. 1–4.
- [10] P. John-Baptiste, G. E. Smith, A. M. Jones, and T. Bihl, "Rapid waveform design through machine learning," in 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2019, pp. 659–663.
- [11] P. Farr, A. M. Jones, T. Bihl, J. Boubin, and A. DeMange, "Waveform design implemented on neuromorphic hardware," in 2020 IEEE International Radar Conference (RADAR), 2020, pp. 934– 939.
- [12] M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, "Loihi: A neuromorphic manycore processor with on-chip learning," IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.
- [13] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, & Yoshua Bengio. (2014). Generative Adversarial Networks.
- [14] V. Kotariya and U. Ganguly, "Spiking-gan: A spiking generative adversarialnetwork using time-tofirst-spike coding," 2021.
- [15] B. Rosenfeld, O. Simeone, and B. Rajendran, "Spiking generative adversar-ial networks with a neural network discriminator: Local training, bayesianmodels, and continual meta-learning," 2021.
- [16] Q. Xu, J. Peng, J. Shen, H. Tang, and G. Pan, "Deep covdensesnn: Ahierarchical event-driven dynamic framework with spiking neurons in noisyenvironment," Neural Networks, vol. 121, pp. 512–519, 2020.

- [17] O. Ozdenizci and R. Legenstein, "Adversarially robust spiking neural net-works through conversion," 2024.
- [18] J. Ding, T. Bu, Z. yu, T. Huang, and J. Liu, "Snn-rat: Robustness-enhancedspiking neural network through regularized adversarial training," 10 2022.
- [19] B. Wang, J. Cao, J. Chen, S. Feng, and Y. Wang, "A new ann-snn conver-sion method with high accuracy, low latency and good robustness," in Pro-ceedings of the Thirty-Second International Joint Conference on ArtificialIntelligence, IJCAI-23 (E. Elkind, ed.), pp. 3067–3075, International JointConferences on Artificial Intelligence Organization, 8 2023. Main Track.
- [20] Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T., Rasmussen, D., Choo, X., Voelker, A., & Eliasmith, C. (2014). Nengo: a Python tool for building large-scale functional brain models. Frontiers in Neuroinformatics, 7(48), 1–13.
- [21] D. Alvarez-Melis and N. Fusi, "Geometric dataset distances via optimaltransport," 2020.
- [22] W. Fang, Y. Chen, J. Ding, Z. Yu, T. Masquelier, D. Chen, L. Huang, H. Zhou, G. Li, and Y. Tian, "Spikingjelly: An open-source machine learn-ing infrastructure platform for spike-based intelligence," Science Advances, vol. 9, no. 40, p. eadi1480, 2023.
- [23] T. Bu, W. Fang, J. Ding, P. Dai, Z. Yu, and T. Huang, "Optimal ann-snnconversion for high-accuracy and ultra-low-latency spiking neural networks,"2023.
- [24] Hao, Z., Bu, T., Ding, J., Huang, T., & Yu, Z. (2023). Reducing ANN-SNN Conversion Error through Residual Membrane Potential. Proceedings of the AAAI Conference on Artificial Intelligence, 37(1), 11-21. <u>https://doi.org/10.1609/aaai.v37i1.25071</u>

References

[25] K. You, Z. Xu, C. Nie, Z. Deng, Q. Guo, X. Wang, and Z. He, "Spikezip-tf:Conversion is all you need for transformer-based snn," 2024.