
Data-Aware Tuning of Deep 
Learning Models

Anthony Baietto

Committee: Dr. Chris Stewart, Dr. Trevor Bihl (AFRL)
                     Dr. Radu Teodorescu, Dr. Mi Zhang



2

• Chapter 1 – Introduction
• Motivation
• Thesis Statement
• Contributions and Outline

• Neural Network Architecture
• Chapter 2 – “Lean Neural Networks for Autonomous Radar Waveform Design” 

(§𝟏𝟏, §𝟐𝟐,§𝟒𝟒)
• Chapter 2.5 – “Lean Neural Networks for Real-time Embedded Spectral Notching 

Waveform Design” (§𝟐𝟐,§𝟓𝟓)

• Neural Network Training Data
• Chapter 3 – “Dataset Augmentation for Robust Spiking Neural Networks” 

(§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
• Chapter 4 – “Generative Data for Neuromorphic Computing” (§𝟐𝟐,§𝟓𝟓)
• Chapter 5 – “Dataset Assembly for Training Spiking Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)

• Neural Network Initialization
• Chapter 6 – “Generative Samples for Smooth Weight Transitioning to Spiking 

Neural Networks” (§𝟑𝟑,§𝟓𝟓)

• Conclusions & Future Work Opportunities

Overview



3

Chapter 1 – Introduction
Motivation

[1]                                                            [2]

[3]                                                            [3]
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Successful neural network solutions require leveraging existing knowledge 
found within extant solutions to provide hardware flexibility, unerring 
resiliency, and superior performance with minimal regression. Specifically, 
attentive design, implementation, and execution must be a part of neural 
network development, including:

§𝟏𝟏.   Incorporation of existing problem-specific 
information into neural network architecture choices.
§𝟐𝟐.   Emphasis on maintaining low SWaP (size, weight, and 
power) solutions without sacrificing performance.
§𝟑𝟑.   Supplying self-correcting abilities via augmentative 
training data.
§𝟒𝟒.   Providing equivalent robustness to tried and true 
existing solutions.
§𝟓𝟓.   Insuring flexibility for deployment to the latest 
hardware including neuromorphic processors.

Chapter 1 – Introduction
Thesis Statement
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Chapter 1 – Introduction
Contributions and Outline
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This ResearchPrevious Related Activity
• Neural Network Architecture

• Low-SWaP [7, 8, 9, 10, 11]
• End-to-End Pipeline [4, 5, 6]
• Hardware Portability [6, 7, 8, 9, 10, 11]
• Intelligent Design [4, 5, 6, 7]

• Neural Network Training Data
• Generative Spiking [14, 15, 16]
• SNN Robustness [16, 17, 18, 19]
• Spike Viewpoint Encoding [16, 19]
• Adversarial Attacks [17, 18]

• Neural Network Initialization
• Activation Substitution [20, 22, 23, 24, 25]
• Post Correction [23, 24]
• Arbitrary Architecture [20, 22, 25]

• Signal Processing
• Iterative process: ERA [4]
• Convex Optimization: RUWO [5]

• Neural Network Architecture
• Low-SWaP [AB1] [AB2]
• End-to-End Pipeline [AB1] [AB2]
• Hardware Portability [AB1] [AB2]
• Intelligent Design [AB1] [AB2]

• Neural Network Training Data
• Generative Spiking [AB3] [AB4] [AB5]
• SNN Robustness [AB3] [AB5]
• Spike Viewpoint Encoding [AB3] [AB5]

• Neural Network Initialization
• Activation Substitution [AB6] 
• Post Correction [AB6]
• Arbitrary Architecture [AB6]

• Signal Processing
• Lean ANNs [AB1] [AB2] [AB7] [AB8]

[AB1] “Lean Neural Networks for Autonomous Radar Waveform Design” Sensors 2022
[AB2] “Lean Neural Networks for Real-time Embedded Spectral Nothing Waveform Design” IEEE ISIE 2022
[AB3] “Dataset Augmentation for Robust Spiking Neural Networks” IEEE ACSOS 2023  
[AB4] “Generative Data for Neuromorphic Computing” HICSS 2025
[AB5] “Dataset Assembly for Training Spiking Neural Networks” Neurocomputing. In review

[AB6] “Generative Samples for Smooth Weight Transitioning to Spiking” In preparation

[AB7] “Method of Analyzing and Correcting a Dynamic Waveform Using Multivariate Error Loss Functions” IP 18/418,576 
[AB8] “Method of Analyzing and Correcting a Dynamic Waveform by Real and Imaginary Partitioning and Recombination” IP 18/418,585

Chapter 1 – Introduction
Technical Motivation, Prior Work, and Expansion
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Increased Wireless Spectrum Interference
• 4G/5G telecommunication networks
• Mobile sensors
• IoT devices

Neural Network Architecture
Radar Waveform Design
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Interference Mitigation with Spectral Notching
• Sample RF environment
• Determine interfered stopband
• Modify transmit waveform to avoid stopband

Neural Network Architecture
Radar Waveform Design
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• Difficult task with multiple constraints that must 
be met for radar functionality and power 
efficiency

• Trade-off between runtime/power and precision
• Want near real-time without sacrificing performance

Neural Network Architecture
Radar Waveform Design
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• Solutions must also be portable to different 
hardware
• RFSoC FPGA (Radio Frequency System on Chip Field-Programmable Gate 

Array) has fixed-point representation limit for example

Neural Network Architecture
Radar Waveform Design



12

Work Low SWaP End-to-End Hardware 
Portability

Intelligent 
Design

Error Reduction 
Algorithm (ERA) [4] ✓ ✓

Re-Iterative Uniform 
Weight Optimization 

Algorithm (RUWO) [5]
✓ ✓

MIMO GPU [6] ✓ ✓ ✓
TCNRWR [7] ✓ ✓ ✓
RVTDCNN [8] ✓ ✓
Autowave pre-

computed [9, 10, 11] ✓ ✓

My work [Chapter 2, 
Chapter 2.5] ✓ ✓ ✓ ✓

Neural Network Architecture
Radar Waveform Design
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• AutoWave → Artificial Intelligence (AI) 
implementation of an adaptive radar system 
which uses neural networks to adjust transmitted 
waveforms to avoid sources of interference
• Treat RUWO as absolute, train NN to learn RUWO

• Naive assumption: increasing neural network 
size will result in better performance

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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Moving away from Mean Squared Error (MSE)
• Numerical comparisons between coefficient 

vectors prone to errors

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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Tailor loss function to radar waveform design
1. Provide quicker learning to valid solutions compared to MSE
2. Discourage “close enough” waveforms which are similar but not 

valid
3. Encourage neural network to always produce valid waveforms 

(even if not identical to RUWO)

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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Split processing into 2 parallel neural networks
• Quadrature radar waveforms are separate

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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Split processing into 2 parallel neural networks 

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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CPU / GPU Simulation

RFSoC FPGA Open-Air Trials

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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Custom Loss

MSE

Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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Neural Network Architecture
Chapter 2 – “Lean Neural Networks for Autonomous Radar 

Waveform Design” (§𝟏𝟏,§𝟐𝟐,§𝟒𝟒)
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• Specifically target low power embedded 
devices (Raspberry Pi 3B)

Neural Network Architecture
Chapter 2.5 – “Lean Neural Networks for Real-time Embedded 

Spectral Notching Waveform Design” (§𝟐𝟐,§𝟓𝟓)
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Algorithm
Dell r720 

2x Intel E5-2670, NVIDIA GT 1030, 144GB RAM

Latency (ms)      Energy (J)

Raspberry Pi 3B
Broadcom BCM2837, 1GB RAM

     Latency (ms)          Energy (J)

RUWO 1064.98 ± 10.94 261.3 ± 6.5 453,965.43 ± 4131.61 1510.5 ± 14.8

ERA 185.47 ± 3.87 45.5 ± 1.4 1982.04 ± 29.27 6.5 ± 0.1
NN MSE 23.19 ± 1.86 3.7 ± 0.3 230.98 ± 2.74 0.6 ± 0.01

NN Tailored 
Loss 

Function
20.72 ± 0.44 3.7 ± 0.1 233.92 ± 3.16 0.6 ± 0.01

NN Tailored 
Network 

Architecture
23.35 ± 0.29 4.1 ± 0.6 250.90 ± 0.63 0.7 ± 0.01

Neural Network Architecture
Chapter 2.5 – “Lean Neural Networks for Real-time Embedded 

Spectral Notching Waveform Design” (§𝟐𝟐,§𝟓𝟓)
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Spiking Neural Networks (SNNs)
• Biologically inspired 3rd generation neural networks
• Neurons communicate via discrete pulses over time
• Great for time-series data
• SNN processing consumes less power when 

realized on neuromorphic                                 
hardware such as 
Intel Loihi [12]

https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-
neuromorphic-loihi-2-lava-software.html#gs.4ve63w

Neural Network Training Data
Spiking Neural Networks (SNNs)
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• Operate on continuous 
values 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛

• Information propagates 
instantaneously

• Operate on discrete spike 
trains 𝑆𝑆1, 𝑆𝑆2, … , 𝑆𝑆𝑛𝑛

• Must be run over a period 
of time

ANNs          vs            SNNs        

Neural Network Training Data
Spiking Neural Networks (SNNs)
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𝐸𝐸 = 𝐿𝐿 𝑦𝑦, �𝑦𝑦
𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖 + 𝑏𝑏
𝑜𝑜𝑗𝑗 = 𝜑𝜑 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗

𝛿𝛿𝑗𝑗 =

𝜕𝜕𝐿𝐿 𝑦𝑦,𝑜𝑜𝑗𝑗
𝜕𝜕𝑜𝑜𝑗𝑗

𝑑𝑑𝜑𝜑 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗
𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗

 𝑗𝑗 output

∑𝑘𝑘𝑤𝑤𝑗𝑗𝑘𝑘𝛿𝛿𝑘𝑘
𝑑𝑑𝜑𝜑 𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗
𝑑𝑑𝑛𝑛𝑛𝑛𝑛𝑛𝑗𝑗

𝑗𝑗 hidden

∆𝑤𝑤𝑖𝑖𝑗𝑗 = −η𝑜𝑜𝑗𝑗𝛿𝛿𝑗𝑗

ANNs          vs           SNNs        
• Input 𝑠𝑠𝑖𝑖 𝑛𝑛 = ∑𝑓𝑓 𝛿𝛿 𝑛𝑛 − 𝑛𝑛𝑖𝑖

𝑓𝑓

• 𝑎𝑎𝑖𝑖 𝑛𝑛 = 𝜖𝜖 ∗ 𝑠𝑠𝑖𝑖 𝑛𝑛  𝜖𝜖 𝑛𝑛 =
𝑛𝑛

𝜏𝜏𝑠𝑠
𝑛𝑛𝑥𝑥𝑒𝑒 1 −

𝑛𝑛

𝜏𝜏𝑠𝑠
Θ 𝑛𝑛

• 𝑣𝑣𝑖𝑖 𝑛𝑛 = 𝑣𝑣 ∗ 𝑠𝑠 𝑛𝑛  v 𝑛𝑛 = −2𝜗𝜗𝑛𝑛𝑥𝑥𝑒𝑒 1 − 𝑛𝑛
𝜏𝜏𝑟𝑟

Θ 𝑛𝑛

• 𝑢𝑢 𝑛𝑛 = ∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑎𝑎𝑖𝑖 𝑛𝑛 + 𝑣𝑣𝑖𝑖 𝑛𝑛
• 𝑓𝑓𝑠𝑠 𝑢𝑢 ∶ 𝑢𝑢 → 𝑠𝑠
•      𝑠𝑠 𝑛𝑛 ≔ 𝑠𝑠 𝑛𝑛 + 𝛿𝛿 𝑛𝑛 − 𝑛𝑛 𝑓𝑓+1

•       𝑛𝑛 𝑓𝑓+1 = 𝑚𝑚𝑚𝑚𝑛𝑛 𝑛𝑛 ∶ 𝑢𝑢 𝑛𝑛 = 𝜗𝜗, 𝑛𝑛 > 𝑛𝑛 𝑓𝑓

Neural Network Training Data
Spiking Neural Networks (SNNs)
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SNN Data
• SNNs operate on discrete spike trains
• Can be either generated from static data using 

integrate-and-fire (IF) neurons 
or captured directly using a 
Dynamic Vision Sensor (DVS) 
camera which produces event
data:
𝒙𝒙 coordinate, y coordinate, 𝒕𝒕 timestep, 𝒑𝒑 polarity of light − intensity change

https://inilabs.com/products/

Neural Network Training Data
Spiking Neural Networks (SNNs)
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Spike Distribution Dependencies
• For a given static image, there are a copious number 

of valid spike trains which can be created/captured 
depending on IF neuron parameters, DVS camera 
settings, or lighting properties of the subject

• Surrogate gradient SNN training can fixate on the 
intervals of training spikes leading to generalization 
issues 

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Work Generative 
Spiking

SNN 
Robustness

Spike 
Viewpoint

Adversarial 
Attacks

Spiking-GAN [14] ✓
SpikeGAN [15] ✓

Deep CovDenseSNN [16] ✓ ✓ ✓ (encoding)

Ozdenizci et al. [17] ✓ ✓

SNN-RAT [18] ✓ ✓

StepReLU [19] ✓ ✓ (encoding)
My work 

[Chapter 3, Chapter 4, 
Chapter 5]

✓ ✓ ✓

Neural Network Training Data
Spiking Neural Networks (SNNs)
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My approach
• Using a spiking GAN, generate valid samples of 

varying spike distributions
• Augmented dataset provides additional robustness 

against samples different from the original training 
set

• Generated samples enrichen dataset without 
additional manual collection of data and without 
dataset growth for each possible spike distribution

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Generative Adversarial Networks (GANs)
• Adversarial learning paradigm in which a generator 

model 𝐺𝐺 synthesizes artificial samples, and a 
discriminator model 𝐷𝐷 classifies samples as either 
real or fake

• 𝐺𝐺 and 𝐷𝐷 “compete” against each other i.e., they are 
playing a minimax 
game to each better
themselves

Neural Network Training Data
Generative Adversarial Networks (GANs)
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GAN Training
• 𝐺𝐺 and 𝐷𝐷 are trained simultaneously in which 𝐷𝐷 identifies areas in 

which it can more easily identify fake samples
• These areas then become the focus for where 𝐺𝐺 updates its weights
• Given sufficient capacity, 𝐺𝐺 and 𝐷𝐷 converge to where 𝑒𝑒𝑔𝑔 ≈ 𝑒𝑒𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑 and 

𝐷𝐷 𝑥𝑥 = 0.5 for all input
• min

𝐺𝐺
max
𝐷𝐷

𝑉𝑉 𝐷𝐷,𝐺𝐺 = 𝔼𝔼𝑥𝑥~𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 log𝐷𝐷 𝑥𝑥 + 𝔼𝔼𝑧𝑧~𝑝𝑝𝑧𝑧 𝑧𝑧 log 1 − 𝐷𝐷 𝐺𝐺 𝑧𝑧

[13]

Neural Network Training Data
Generative Adversarial Networks (GANs)
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(1)  SNN classifier trained to convergence
(2)  GAN trained using classifier weights to seed discriminator
(3)  Trained GAN generator used to augment train dataset for further  

 classifier training START
FURTHER TRAIN 
SNN CLASSIFIER

INITIALIZE SNN 
CLASSIFIER

TRAIN SNN 
CLASSIFIER

INITIALIZE GAN 
DISCRIMINATOR

INITIALIZE GAN 
GENERATOR

TRAIN GAN

AUGMENT TRAIN 
DATASET

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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My approach (cont’d)
• During augmentation, samples are generated on an 

as-needed basis determined by the relative class 
performances

• Difficulty of correct classification is not uniform 
across all classes of data → disproportionate 
number of samples can achieve same overall 
accuracy

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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My approach (cont’d)
• Three schemes used to determine the number of 

additional samples needed for the next iteration:
 1) equal: same number of samples across all classes
 2) adhoc: only samples from the 3 worst performing 
                      classes added
 3) scale: number of samples added correlated to 
                    relative performance of each class

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Setup
• CIFAR-10 training spike trains generated from 

𝑋𝑋~𝑈𝑈 100, 200  firing rate distribution using LIF (leaky 
integrate-and-fire neuron) in Nengo [20] simulator

• Models evaluated on fewer spikes and more spikes 
distributions → half (𝑋𝑋~𝑈𝑈 50, 100 ) and double 
(𝑋𝑋~𝑈𝑈 200, 400 ) the number of spikes compared to 
training distribution

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Training
• My models quickly responded to the changing spike 

distribution

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Testing
• All models perform worse as samples drifted further 

from the training distribution
• My models outperformed baseline classifier by an 

average 1.80% and had an average 1.02% lesser 
reduction in accuracy

Neural Network Training Data
Chapter 3 – “Dataset Augmentation for Robust Spiking Neural 

Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Objective
• Address shortage of neuromorphic datasets
• Apply generative augmentation to natively spiking 

dataset: IBM DVSGesture
• Unlock new SNN developments

with greater access to quality
spiking datasets

Neural Network Training Data
Chapter 4 – “Generative Data for Neuromorphic 

Computing” (§𝟐𝟐,§𝟓𝟓)
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Neural Network Training Data
Chapter 4 – “Generative Data for Neuromorphic 

Computing” (§𝟐𝟐,§𝟓𝟓)
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Neuromorphic Quality Metrics
• Frame Difference – cosine similarity between frames
• Sparsity – avg. number of events per pixel
• Density – avg. number of pixels firing per timestep

Neural Network Training Data
Chapter 4 – “Generative Data for Neuromorphic 

Computing” (§𝟐𝟐,§𝟓𝟓)
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Neural Network Training Data
Chapter 4 – “Generative Data for Neuromorphic 

Computing” (§𝟐𝟐,§𝟓𝟓)

Sample Quality
• Generative samples behave roughly similar to their 

real counterparts
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Neural Network Training Data
Chapter 4 – “Generative Data for Neuromorphic 

Computing” (§𝟐𝟐,§𝟓𝟓)

Sample Behavior in Training
• Generative samples improved training performance
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Continuation of chapter 3
• Spike Viewpoint Dependencies in natively spiking 

dataset: IBM DVSGesture
• DVSGesture contains lighting conditions:

• Fluorescent
• Fluorescent LED
• LAB
• LED
• Natural

Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)

Lighting Condition Effects
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)

Optimal Transport Dataset Distance (OTDD)[21]

Accuracy & OTDD correlation. Positive values indicate a decrease in accuracy from the starting lighting condition 
with an increase in OTDD while negative values indicate the opposite. A larger magnitude indicates a larger 
change in accuracy corresponding to a larger OTDD difference.
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)

Helper Lighting (based on OTDD)
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)

Generative Augmentation
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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Neural Network Training Data
Chapter 5 – “Dataset Assembly for Training Spiking 

Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
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• Chapter 1 – Introduction
• Motivation
• Thesis Statement
• Contributions and Outline

• Neural Network Architecture
• Chapter 2 – “Lean Neural Networks for Autonomous Radar Waveform Design” 

(§𝟏𝟏, §𝟐𝟐,§𝟒𝟒)
• Chapter 2.5 – “Lean Neural Networks for Real-time Embedded Spectral Notching 

Waveform Design” (§𝟐𝟐,§𝟓𝟓)

• Neural Network Training Data
• Chapter 3 – “Dataset Augmentation for Robust Spiking Neural Networks” 

(§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)
• Chapter 4 – “Generative Data for Neuromorphic Computing” (§𝟐𝟐,§𝟓𝟓)
• Chapter 5 – “Dataset Assembly for Training Spiking Neural Networks” (§𝟐𝟐,§𝟑𝟑,§𝟒𝟒)

• Neural Network Initialization
• Chapter 6 – “Generative Samples for Smooth Weight Transitioning to Spiking 

Neural Networks” (§𝟑𝟑,§𝟓𝟓)

• Conclusions & Future Work Opportunities

Overview
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Big Idea
• Want to run ANN on neuromorphic hardware without 

needing to start from scratch SNN
• Need method for transitioning weights to higher 

dimensional sample space

Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)
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Work Activation 
Substitution

Arbitrary 
Architecture

Post 
Correction

ANN 
Preservation

Nengo [20] ✓ ✓
Spikingjelly [22] ✓ ✓

Bu et al. [23] ✓ (quantized) ✓
Hao et al. [24] ✓ (quantized) ✓

SpikeZIP-TF [25] ✓ (quantized) ✓

My work [Chapter 6] ✓ ✓ ✓ ✓

Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)



57

Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)

Observation
• Raw weight copying failed, weight scale needed
• Accuracy degradation moving from ANN to SNN
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Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)
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Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)

Step 1 – Copy weights & train GAN
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Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)

Step 2 – Store layer activations



61

Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)

Step 3 – Generate unique samples
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Neural Network Initialization
Chapter 6 – “Generative Samples for Smooth Weight 

Transitioning to Spiking Neural Networks” (§𝟑𝟑,§𝟓𝟓)

Observation
• Addition of GAN samples improves performance 

during re-training across all architectures/datasets
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• Chapter 2.5 – “Lean Neural Networks for Real-time Embedded Spectral Notching 

Waveform Design” (§𝟐𝟐,§𝟓𝟓)

• Neural Network Training Data
• Chapter 3 – “Dataset Augmentation for Robust Spiking Neural Networks” 
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§𝟏𝟏.   Incorporation of existing problem-specific 
information into neural network architecture choices.

• Chapter 2

§𝟐𝟐.   Emphasis on maintaining low SWaP (size, weight, and 
power) solutions without sacrificing performance.

• Chapters 2 – 5

§𝟑𝟑.   Supplying self-correcting abilities via augmentative 
training data.

• Chapters 3, 5, 6

§𝟒𝟒.   Providing equivalent robustness to tried and true 
existing solutions.

• Chapters 2, 3, 5

§𝟓𝟓.   Insuring flexibility for deployment to the latest 
hardware including neuromorphic processors.

• Chapters 2, 4, 6

Conclusions
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1. Applying generative augmentation to 
spiking transformers (spiking LLMs)
• My work dealt with SNN simulations
• Explore generative augmentation 

benefits on neuromorphic hardware
• Incorporate latest transformer 

architectures on SNN platforms

Future Work Opportunities
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2. Condensing my work for converting 
algorithms to SNNs in a single step
• My work converts traditional algorithms 

to intelligently designed ANNs
• My work also addressed converting 

ANNs to SNNs
• As demand for SNNs increases, a single 

step conversion could prove to be 
important

Future Work Opportunities
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3. Incorporating code/text analysis for 
automatic domain knowledge extraction 
from existing software solutions
• My work “manually” extracted and domain 

knowledge for inclusion in ANN design 
(conversations, literature reading, etc.)

• Code analysis (existing software 
solutions)

• Text analysis via LLMs (existing literature)

Future Work Opportunities



Questions?
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