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Spiking Neural Networks (SNNs)

« Biologically inspired 3
generation neural AN o
networks s b L

« Neurons communicate via -
discrete pulses over time

 SNN processing
consumes less power
when realized on
neuromorphic
processors
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ANNSs VS SNNSs

» QOperate on continuous * Operate on discrete spike
values x4, x,, ..., X, trains S, S5, ..., Sy,

« Information propagates « Must be run over a period
iInstantaneously of time
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ANNSs VS SNNSs
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Neuromorphic Sensors

* Event based rather than frame based (less
communication — lower energy consumption)

*  [x coordinate,y coordinate, t timestep, p + / — change in luminance]

Time 0 Time 1

-

Frame-based Sensor (all 100 pixels communicated):

(1, 10, #000000) (2, 10, #000000) ses (9, 10, #£000000) (10, 10, #000000)
(1,9, #000000) (2,9, #000000) <= (9,9, #000000) (10,9, #00000O) https: //inilabs.com/products/

—)

(1,2, #000000) (2,2, #FFFFFF)ees (9,2, #FFFFFF) (10,2, #000000)
(1,1, #000000) (2, 1, #00000O) e+ (9, 1, #00000O0) (10, 1, #00000O)

Neuromorphic Sensor (8 events communicated):
(2,4,-,1) (2,2,+,1)

(2,5,-,1) (2,3, +,1)
(9,4,-,1) (9,2, +,1)
(9,5,-,1) (9,3, + 1) 6
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Issues

« Scarcity of neuromorphic datasets hinders testing
and development of neuromorphic computing
models

* |nadequate standardization and collaboration
between neuromorphic computing community and
traditional computer science complicates dataset
proliferation
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Our approach

* Leverage generative models to expand existing
neuromorphic datasets with synthetic samples

* Ensure quality sample generation via comparisons to
real samples across multiple metrics

« Show SNN training improvements on augmented
training datasets
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Conditional Generative Adversarial
Networks (CGANS)

Adversarial learning paradigm in which a generator
model G synthesizes artificial samples, and a

dlscrlmlnator model D | @a
classifies samples as either

real or generated

Once converged, the
generator model can be

used to create an arbitrary number of realistic
samples
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1) Initial neuromorphic dataset is used to train CGAN

2) Synthetic dataset is used in tandem for SNN training
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Generative Sample Metrics

* Frame Difference — Cosine Similarity between
adjacent timesteps

« Sparsity — Average number of eventer per pixel
* Density — Average number of events per frame
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Setup
 |[IBM DVSGesture dataset

 Neuromorphic dataset of 29 subjects performing hand motions
in front of a DVS camera

* Experiments performed using
Ya, V2, and entire dataset to
simulate affect of insufficient
access to training data

air drums

A. Amir et al., "A Low Power, Fully Event-Based
Gestur R g nition System,’ 2017IEEE
Confer n Computer Vision and Patter
Recogni t (CVPR) Honolu | HI USA, 2017
7388-7397, doi: 10.1109/CVPR.2017.781.
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Generative Samples Metrics

* (Generative samples have similar
distribution of spikes to real samples

Dataset Frame Difference Sparsity Density
DVSGesture 0.07105 0.00152 0.00152
CGAN 1/4 DVSGesture 0.04033 0.00424  0.00424
CGAN 1/2 DVSGesture 0.00020 0.00030  0.00030
CGAN Entire DVSGesture 0.00010 0.00030  0.00030
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Generative Samples Training Impact

* Access to generative samples improves
training performance

 CGAN sample generation quality improves
with more sample exposure

1/4 DVSGesture Dataset 1/2 DVSGesture Dataset
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Generative Samples Training Impact

* As # of generated samples exceeds # of
CGAN training samples, impact on training
performance decreases
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Conclusions

 SNNs and neuromorphic sensors are highly energy
efficient

« (Generative data can be used to augment scarce
spiking datasets

* SNN training benefits from access to generative
samples
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